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Abstract 
In the context of the existing similarities in electron and optical properties of 
mesoscopic structures the problem is discussed of engineering the heterogeneous 
media and devices with predetermined optical transmission spectrum. Taking into 
account that similarities come from isomorphism of Shroedinger equation for an 
electron and Helmholz equation for electromagnetic waves in an inhomogeneous 
medium, a possibility is considered to transfer experience in solving inverse 
Shroedinger problem in quantum physics to photonic engineering where inverse 
Helmholtz problem is to be dealt with. 

1 Introduction  

Since the time Louie de Broglie had published his genuine hypothesis on wavy properties 
of material particles[1], the wave mechanics of matter  has become a well developed field of 
modern science providing explanations of basic properties of the natural matter, e.g. atoms, 
molecules, clusters, crystals, and predicting new properties of artificial structures, e. g. 
quantum wells and superlattices. At the dawn of quantum mechanics, a transfer of ideas from 
classical physics of waves, namely diffraction and interference of  electromagnetic (EM) 
waves, have been successfully performed interpret and predict the relevant phenomena for 
electrons. Nowadays in many instances one can observe a reverse process: concepts from 
condensed matter physics relevant to one-electron problems are being extensively transferred 
to optics and basically to physics of classical waves in a more general meaning.  

Quantum particles of matter, e. g. electrons possess non-zero rest mass, charge, spin, and 
Fermi-Dirac statistic.  Photons have zero rest mass, zero charge, no spin and obey Bose-
Einstein statistic. Electrons and EM-waves have different densities of states and different 
dispersion laws. These characteristics are shown in Table 1. One can see these differences 
are rather significant resulting in different properties of matter and field. Nevertheless, there 
is a wide class of physical problems and phenomena where wave-like particles of matter and 
field quanta behave alike. These are problems and phenomena where Coulomb interactions, 
many-body effects and spin effects with respect to electrons, and absorption/emission events 
with respect to photons are not important.  These problems are related to energy spectra of 
electrons in various potentials and to light propagation through different heterogeneous 
media. In many instances, electrons and classical waves behave similar if potential relief with 
respect to electrons is considered by analogy with local dielectric function with respect to 
EM-waves and if the relevant length scale is considered (nanometer scale in case of electrons 
and submicron scale in case of photons).  

2 Isomorphism of Helmholtz and Schroedinger equations 

Propagation of EM-waves and steady states of an electron are derived by means of 
solution of the same second order differential equation which is known as Helmholtz 
equation with respect to electromagnetic waves and Schroedinger equation[2] with respect to 
electron. It reads 

PDF created with FinePrint pdfFactory Pro trial version http://www.fineprint.com

mailto:gaponen@imaph.bas-net.by
http://www.fineprint.com


∇ + =2f x y z F x y z f x y z F f x y zn( , , ) ( , , ) ( , , ) ( , , ) .   (1) 

In case of an electron (or other quantum particle) f(x,y,z) is wavefunction which determines 
the probability to find a particle at a point (x,y,z)[3], F(x,y,z) determines the spatial potential 
relief U(x,y,z), and Fn forms a set of values proportional to steady state particle energies. In 
case of EM-waves, f(x,y,z) is electric field spatial distribution, F(x,y,z) determines the spatial 
relief of dielectric function (in non-absorbing media the relief of refraction index n(x,y,z)), 
and Fn forms a set of propagating modes with frequencies ωn. Fig.1 illustrates propagation of 
a particle or EM-wave through a heterogeneous medium with the relevant potential and 
refraction index profiles. For simplicity, a one-dimensional configuration with stepwise 
change of the corresponding physical parameter is presented which is the case for solid state 
heterostructures and optical multilayer filters for electrons and EM-waves, respectively.  
 

Table 1. A sketch of principal characteristics of electrons and photons. 
 E – energy, ω – frequency, k – wavenumber, c – speed of light in vacuum 

 electrons photons 

rest mass m0 = 9,109534⋅10−31 kg zero 

charge å = 1,602189⋅10−19 C zero 

spin 1/ 2  1 

dispersion law (in free space) E = h2k2/2m0 hω = ck 

density of states (in 3 dimensions) D(E) = m E3 2 1 2

1 2 1 2 32

/ /

/ /π h
 D(ω) = ω2/2π2c3  

statistic Fermi–Dirac Bose–Einstein 
 
 

 

 
Fig. 1. A stack of alternating layers of two materials A and B with different 
parameters determining stepwise profile of  potential U(x) and refraction index n(x). 
 
3 EM-waves and electrons in various media 
There is a number of well-established analogies in behavior of electrons and waves in 

structures with spatial variation of potential and refractive index (dielectric function in more 
general case). They are listed in Table 2. Consider them very briefly using notation 
“potential” both for U and n profiles. 

1.  In case of a single potential step, reflection/transmission of a quantum particle in case 
of propagation over barrier is well established from a textbook solution of the Schroedinger 
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equation with a nice classical analogy in the form of  Frenel’s laws for reflection of light at 
the border of two media with different refractive indices. Note, the construction of non-
reflecting barriers in quantum mechanics did stimulate development of optical thin film 
bleaching coatings [4]. 

2.  Tunneling through a step-like potential barrier. This famous quantum effect first 
predicted by Leontovich and Mandelshtam[5] has a very clear classical analog, namely 
tunneling of light wave through thin metal films. 

3.  In case of sequential identical wells separated by identical barriers, splitting occurs of 
resonant states relevant to a single well which is known in textbook quantum mechanics and 
is inherent in multilayered coating widely used in optics and lasers as dielectric mirrors and 
beamsplitters[6]. 

4.  Resonant tunneling of an electron through a couple of barriers separated by a well is 
widely used in nanoelectronics. The relevant classical analog is formation of resonant 
transmission modes in a Fabry-Perot cavity. 

5.  In a periodic potential, wavefunction and electric field distribution obey so called 
Bloch waves[7]. Both electrons and EM-waves possess bands of allowed and forbidden states 
where allowed states correspond to transmission modes and forbidden states within gaps 
form reflection modes (stop-bands). The band-like structure was first obtained by Kronig and 
Penney just for a periodic square potential [8]. The concepts of Bloch waves and energy band 
structures forms the basis of quantum theory of solids. Replication of these concepts to EM-
waves resulted in a rapid development of the concept of photonic crystals, i.e. media with 
periodic change of dielectric function in 1, 2, or 3 dimensions, with multiple applications in 
optoelectronics and optical communication [9-12]. 

Table 2. Analogies of electron and EM-wave with respect to propagation in a 
medium with spatial profile of potential and refraction index  

 Spatial profile electrons EM-waves 

1.  single step reflection/transmission reflection/transmission 
2.  step-like barrier tunneling tunneling  
3.  identical sequential 

barriers/wells 
multiple splitting of steady 
state energy levels 

multiple resonance transmission 
bands 

4.  a well isolated with 
2 barriers 

resonant tunneling Fabry-Perot resonant modes 

5.  periodic energy bands separated by 
gaps 

frequency transmission bands 
separated by gaps 

6.  random with small 
disorder 

weak localization  coherent back-scattering 

7.  random with strong 
disorder 

localization localization 

8.  quasiperiodic fractal Cantor-like set of 
energy level in quasicrystals 

fractal Cantor-like transmission 
spectrum of Fibonacci filters 

6. Propagation of an electron and EM-waves in a medium containing randomly 
distributed scatterers  is characterized by a peculiar phenomenon known as weak localization 
of electrons due to quantum interference effects[13,14] and coherent back scattering in optics 
[15,16]. 

7. In case of a dense disordered medium localization of electrons occurs[17] providing a 
background of our understanding of electronic properties of amorphous solids. Replication of 
these ideas to EM-waves[18,19] did stimulate challenging experiments on light localization 
[20]. 
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8. In nonperiodic but deterministic multilayer structures pronounced regularities have 
been predicted and observed as well. With respect to electrons in quasiperiodic potential 
energy spectrum in the form of a fractal Cantor set have been established [21]. It is the case 
of naturally existing quasicrystals. The optical analog is Fibonacci quasiperiodic stack of 
alternating layers which was shown to possess Cantor-like spectrum with triple self-similar 
transmission bands within a stop band[22]. 

4  Band engineering in nanoelectronics and photonic engineering in optics 

A transfer of ideas and concepts from solid state physics to optics have led to rapid 
development of interesting solutions in photonic engineering during last decades. Among 
them, e.g. are manipulation with light propagation, control of bandwidths via localization, 
hollow waveguides[23], optical diode[24] and omnidirectional dielectric mirror[25]. In the 
nearest future one can foresee evaluation of scaling properties inherent in nonperiodic fractal 
stacks like, e.g. Cantor set[26]. This topic remains unexamined both with respect to 
electronics and optics. However, it can be very useful in the problem of engineering of filters 
and heterostructures with predetermined transmission spectrum. 

In the context of the existing similarities in electron and optical properties of mesoscopic 
structures the problems of engineering the heterogeneous media and devices with 
predetermined optical transmission spectrum can be solved based on experience gained in 
quantum physics and nanoelectronics. Results obtained for Schroedinger equation with 
various potential profiles, for example, U-like, V-like, W-like,  parabolic and more 
complicate (discussed e.g. in [27–30]) can be directly replicated to optical filters with the 
proper account for different E(k) and ω(k) functions for electrons and EM-waves, 
respectively (Table 1).  Possibly this can result in development of thin film filters with 
desirable transmission bands for optical communication (add/drop and wavelength division 
multiplexing components) which can be competitive with existing fiber Bragg gratings.  
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