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ABSTRACT 

Optical spectra for fractal multilayer structures have been shown to possess scalability. The scaling relations, as 
well as analytical derivation of scalability on the basis of the structure’s geometrical self-similarity, have been 
established. 
Keywords: scaling laws, self-similarity, fractals, multilayers, Cantor structures, eigenvalue problem. 

1. INTRODUCTION 
The problem of electromagnetic wave propagation in multilayer media, or alternatively, the problem of quantum 
particle behavior in a stepwise energy profile is known to reduce to the eigenvalue problem for the Helmholtz (or 
Schrodinger) equation with a complex stepwise potential. However, analytical treatment of such a general case 
has not yet been developed and scientists have to resort to numerical methods, which, though capable of finding 
valid solutions, fail to provide much theoretical insight into the problem. 

One of the ways that appear to be fruitful in gaining such understanding is to seek out and analyze particular 
cases of correlation between the geometrical properties of the structures and the properties of their eigenvalue 
spectrum. 

The two extreme (and hence most studied) cases of multilayer structures are good examples. First, the spectra 
of periodic multilayers have been found to possess forbidden gaps, which are demonstrated to directly result from 
geometrical periodicity. Second, disordered dielectric media have been discovered to slow down, localize, and 
confine light waves traveling through them. 

Recent studies revealed that “intermediate” cases (non-
periodic yet deterministic structures) may not only display 
properties of both extreme cases but also exhibit their own, 
special effects. For instance, it was found [1] that 
quasiperiodic (e.g., Fibonacci) multilayers have self-similar 
spectra, which represent Cantor sets, a well-known example 
of one-dimensional (1D) fractals. Thus it follows that 
spectral self-similarity is a characteristic property of 
geometrical quasiperiodicity. 

In this paper, we have investigated another class of non-
periodic but deterministic structures, the fractal multilayers. 
These self-similar structures appeared to have their optical 
spectra obeying scaling laws first noted by us in numerical 
computation [2], and the fact is a direct result of the 
geometrical self-similarity. 

 

2. FRACTAL MULTILAYERS 
As was mentioned above, fractal multilayers are those 
having features of both periodic and random ones. Although 
it is intuitively understood what to call a fractal multilayer, 
the strict definition thereof is not so clear. One way is to 
define fractal multilayer structures as those constructed 
according to a known fractal generation algorithm. 
However, this algorithm has to be stopped at some point in 
order to get a finite structure. Therefore, any structure 
obtained in this way is not a genuine fractal, but rather a 
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Figure 1. Sample fractal multilayers: (a) 

(3, {1}, N);  (b) (5, {1, 3}, N);  
(c) (4, {1}, N). 
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one-dimensional prefractal, which can be regarded as another definition of a fractal multilayer. 
A common example is a well-known Cantor stack generated using the “middle third removal” procedure [3] 

(see Fig.1a). However, this procedure can be generalized. The most straightforward way to do so is to complicate 
the removal routine, applying it not only to the middle third, but to arbitrary (yet similar from generation to 
generation) regions of the structure. Some variations are described in [3], and investigated in [2,4]. 

In this paper, we introduce even more general procedure. The algorithm starts with a seed assigned N=0. The 
seed is a single dielectric layer (label it A) with the index of refraction nA and thickness dA. The seed is then 
stacked together G times, and the layers are numbered in base G (starting with zero). Then, those parts whose 
numbers belong to a given subset of digits C ⊂ {0,1,…,G-1} are removed and replaced with another material 
(labeled B), with the index of refraction nB and thickness dB. This replication-replacement (RR) procedure is then 
repeated for the resulting structure (which now consists of G layers and is assigned N=1), with the only difference 
that a group of G B-type layers is now used to replace the appropriate fragments. Repeating this RR procedure 
multiple times yields the desired fractal multilayer. 

Here, an arbitrary integer G >2 together with the subset C form the generator of the structure, while the 
assigned number N (actually, the number of RR procedures applied) is the number of generations. The whole 
structure can be referred to as a (G, C, N)-structure. The total number of layers of such a structure is GN, (G-C)N 
of which are A-layers, C being the number of members in C. For convenience of further considerations, several 
adjacent layers of the same material (A or B) are considered separate layers. 

One can easily see this algorithm can produce (i) “usual” middle-third (3, {1}, N), pentadic (5, {1, 3}, N) and 
higher-G Cantor structures (G=2n-1, C={1, 3 … G-2}, N) (see Fig. 1a, b); (ii) non-symmetric structures 
described in [3], e.g., (5, {1, 2}, N), (6, {1, 3, 4}, N) and like that; (iii) generalized Cantor bars spoken of in [4] 
of the type (G, {M, M+1,…,G-M-1}, N) (see Fig. 1c). 

The total thickness of the (G, C, N) structure depends on N as 

 ( ) ( )( )N NN
N A BG C d G G C d∆ = − + − −  (1) 

and can be written as 

 ( ) 1 1N N NG C C− −∆ ≡ − ∆ + ∆ . (2) 
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Figure 2. Scalability of optical spectra for fractal multilayers. Central part of the spectrum for(3,{1},4) scaled 
by S=3 (a, top) versus full spectrum for (3,{1},4) (a ,bottom); the same for (5,{1,3},3), S=5, and (5,{1,3},2) (b); 
the same for (7,{1,5},2), S=7, and (7,{1,5},1) (c). Carefully comparing the plots in the columns, one can see that 

scalability is apparent yet not exact. 

3. NUMERICAL OBSERVATION OF SPECTRAL SCALABILITY 
For all numerical calculations, the constituent layers were chosen to satisfy the quarter wave condition, i.e., 

 0 / 4A A B Bn d n d= = λ . (3) 

(a) (b) (c) 

PDF created with FinePrint pdfFactory Pro trial version http://www.fineprint.com

http://www.fineprint.com


This condition dictates that the spectra are periodic with respect to frequency, the period equal to 2ω0=4πc/λ0. 
This is very convenient, since it provides a natural way to normalize the frequency scale as well as allows only 
one period of spectrum to be referred to as “spectrum”, which is what will be done hereafter. 

We have found earlier [2] that if one magnifies the central region (i.e., located around the central frequency) of 
the spectrum of a (G, C, N)-structure by a factor of G along the frequency axis, this central region will match the 
spectrum of a (G, C, N-1) almost perfectly. This spectral scalability was first noted for Cantor structures [2] (see 
Fig. 2a,b), but subsequent research has revealed that other fractal multilayers also exhibit spectral scalability (see 
Fig. 2c). What is more, the scaling factor S [i.e., the factor by which one has to magnify the central part of the 
(G, C, N1) stack spectrum for matching that of (G, C, N2< N1) stack] is the same in this case and again equals 

 1 2N NS G −= . (4) 

It was already reported [2] that the origin of the spectral scalability is geometrical self-similarity of fractal 
multilayers. However, the only consideration to back up this claim so far has been the fact that the scaling factor 
in (4) exactly equals the geometrical factor of self-similarity, which is clearly seen from the construction 
procedure. In what follows, we provide a more direct and convincing analytical proof. The full calculations will 
be made using the simplest case (3, {1}, N) as an example, with the outline for generalization to the whole class 
of fractal multilayers. 

4. ANALYTICAL DERIVATION OF SCALABILITY 

4.1 The Sun-Jaggard method of computation and its modification for arbitrary layer thicknesses 
To analytically calculate the spectra of Cantor multilayers, we made use of so-called self-similarity method of 
calculation, proposed by Sun and Jaggard in [4] and based on the structure being self-similar. However, the 
method was initially designed only for the case dA= dB, and thus had to be modified to comply with the condition 
(3). According to this modified method, the reflection and transmission coefficients for the structures of Nth  and 
N-1th generation are related as 

 ( ) ( ) ( ) ( ) ( ) ( )1 1 1 1, , , , , , , , , , , , ,N N r N N N N N N N t N N N N NR g R T T g R T+ + + +   ∆ ω = ∆ ω ∆ ω ∆ ω ∆ ω = ∆ ω ∆ ω ∆ ω   
  , (4) 

where ∆N is the overall thickness of the structure and N∆ is as defined in equation (2). The functions 

 ( ) [ ]
[ ] ( ) [ ]

[ ]
2 22

2 22 2

exp exp
, , , , , , ,

1 exp 1 exp

i i
B Bc c

r ti i
B Bc c

xy n d y n d
g x y d x g x y d

x n d x n d
ω ω

ω = + ω =
− ω − ω

 (5) 

were obtained in [4] using the effective medium formalism. The boundary conditions for these recurrent relations 
are reflection and transmission spectra of a single layer, that is,  

 ( ) [ ]
[ ] ( ) [ ]

[ ]
2

0 0
0 0 0 02 22 2

0 0

exp exp
, , ,

1 exp 1 exp

i i
A Ac c

i i
A Ac c

rtt n tt n
R r T

r n r n
′ ′ω ∆ ω ∆

∆ ω = − + ∆ ω =
− ω ∆ − ω ∆

 (6) 

where r=(nA-nB)/(nA+nB), t=2nB/(nA+nB), t=2nB/(nA+nB), t’=2nA/(nA+nB), and ∆0=dA.  

4.2 Scale transformation of analytically derived spectra 
To proceed with the analysis of scalability, one needs to compare the following coefficients: TN+1(∆N+1, ω/3) and 
TN (∆N, ω). From equations (1) and (2) it follows that for G=3 and C=1 the thickness 3N

N Bd∆ = . Thus, 
expanding the quantities using equations (4) and (5), we have 

 ( )
( )

( )
( )

( )
( )

2 2 1
1 13 3

1 1 3 2 2 12 2
1 13 3

, exp 3 , exp 3
, , ,

1 , exp 3 1 , exp 3

N Ni i
N N B B N N B Bc c

N N N NN Ni i
N N B B N N B Bc c

T n d T n d
T T

R n d R n d

−ω ω
− −ω

+ + −ω ω
− −

   ∆ ⋅ ∆ ω ω ⋅   ∆ = ∆ ω =
   − ∆ ⋅ − ∆ ω ω ⋅   

, (7) 

and we see that the exponents in are exactly the same. The sole difference between the quantities in (7) lies in the 
coefficients, namely, TN (∆N, ω/3), RN (∆N, ω/3) and TN-1 (∆N-1, ω), RN-1 (∆N-1, ω), respectively. But these 
coefficients can in turn be expanded in just the same manner, and again, the exponents will be equal, the 
difference present in the coefficients. This way, the expansion can be traced repeatedly and all the frequency-
dependent exponents that appear along the way are equal. However, the tracing has its limits, because once N=0, 
the coefficients can no longer be expanded. 
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4.3 Analysis of initial conditions 
So, the equality in the quantities (4) reduces to the conditions 

 ( ) ( ) ( ) ( )1 1 0 0 1 1 0 03 3, , , , ,T T R Rω ω∆ = ∆ ω ∆ = ∆ ω  (8) 

which, on applying equations (4-6) and performing the substitution 

 
3 3exp , expi i

A A B Bc cn d n dω ω′ε ≡ ε ≡        (9) 

yields that for the conditions (8) to hold, and hence, the scalability to be apparent, it is required that 
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r rtt rtt rttr

r r rrtt rttr r
r r

′ ′ ′ ′ ε ε′ ′  ε  − εε     ′ ′− ε − ε′ ′ ′ ′ ′ ′ε ε ε′  − ε   = = +
′ ′ ′− ε − ε − ε′ ′ ′ ′   ε ε− − ε − − ε   ′ ′− ε − ε   

. (10) 

It can be seen that these conditions cannot hold for arbitrary ω. Nevertheless, we can take into account the 
refraction index contrast nA/nB rarely exceeds 2 in common multilayers and often is as much as 1.5. Hence, one 
can see from its definition that r is normally less than  0.2÷0.3. This allows to use r as a small parameter and 
introduce the first approximation as 

 2 20 1 1r tt r′≈ ⇒ = − ≈ . (11) 

This immediately reduces both conditions (10) to a very simple form 

 ′ε ≈ ε , (12) 

which can be true for arbitrary ω if (and only if) nBdB = nAdA, none other than the quarter-wave condition (3). 

5. CONCLUSIONS 
We can see that the optical spectra for Cantor multilayers indeed appear to possess scalability, and indeed, it can 
be derived analytically using a method that directly employs geometrical self-similarity of a fractal structure. This 
lets us conclude that indeed, spectral scalability is the result of geometrical self-similarity, and these properties 
accompany each other. However, there are notes that have to be made. 

The first one regards the generalization of the analytically obtained results to the whole class of fractal 
multilayers. This can be achieved by generalizing the Sun-Jaggard computation procedure, which is 
straightforward and thus is only a matter of time and mathematical effort.  

Secondly, as seen from both analytical [see the approximation (12)] and numerical calculations (on careful 
inspection of Fig. 2), scalability is only approximate in real multilayers. However, we state this fact results from 
the structures under study being finite. Had it been otherwise, i.e., if the number of generations approached 
infinity, the spectral scalability would be exact, as seen from the calculations, regardless of both the quarter wave 
condition (3) and the refraction index contrast approximation (11). 

But what we have investigated are in fact prefractals rather than true fractals, and geometrical self-similarity in 
them is not exact as well. This disturbs the scalability effect in much the same way as it occurs in other types of 
media. For example, finite periodic structures cannot exhibit completely zero transmission in the bang gaps, and 
in finite disordered media light cannot be completely trapped. In this manner, Nth generation Cantor multilayers 
can be compared to N-period 1D photonic crystals, while it is commonly known that band gaps are usually 
apparent at a much larger N than was used for the plots in Fig. 2. 

However, if certain conditions are satisfied, one can observe decent band gaps even in periodic multilayers with 
as many as four periods. An analogous statement seems to be true for scalability in fractal multilayers. But the 
conditions to be desired are directly opposite. As seen from approximation (11), scalability is best observed if the 
refraction index contract is smaller, while band structure is much more pronounced if the contrast is large 
enough. As regards the quarter wave condition (3), it seems to play an important part in the manifestation of 
characteristic spectral properties in both kinds of materials, making both phenomena more apparent to observe. 

To summarize, both the condition (3) and the approximation (11) are not important theoretically, but are of 
great value practically, allowing to observe apparent scalability even with smaller N, as seen from Fig. 2. 
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