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Propagation of classical waves in nonperiodic media: Scaling properties of an optical Cantor filter
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Wave propagation through a subclass of deterministic nonperiodic media, namely, fractal Cantor multilayer
structures are investigated theoretically as well as experimentally. Transmission spectra of Cantor structures are
found to have two distinctive properti¢scalability andsequential splittingclosely related to the geometrical
peculiarities of the multilayers. A systematic correlation between structural self-similarity and spectral regu-
larities of Cantor multilayers is established.
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I. INTRODUCTION This paper is organized as follows. First, in Sec. Il, a
reader is introduced to the theoretical background, such as
As regards the problem of wave propagation in complexdetails on Cantor multilayers. There we also describe a
media, the last decade was most prominent in establishingfmple but effective technique used for computational proce-
the properties of both perfectly periodic and absolutely randures. The distinctive properties found as a result of the
dom media. On one hand, it was shown that internal periodmodeling and the discussion thereof is what follows in Secs.
icity underlying the design of photonic crystals gives thelll and IV. Finally, in Sec. V, we present experimental results
possibility to obtain complete and absolute photonic band@nd provide comparison with theoretical ones. Section VI
gap for optical radiatiofil—3], thus providing vast contribu- Summarizes the paper.
tion to optoelectronic applications, and on the other hand, the It is also worth noting here that fractal structures, while
idea of light localization in random media has been inten-being relatively new to physical research if compared to con-
sively explored. This idea was greatly inspired by the firsttinuous media and thus investigated not as thoroughly as
theories and experimenfd —6]. desired, represent an object of particular interest for modern
Nonperiodic but deterministic media constitute a separatécience. Fractal objects are found everywhere, from geogra-
field of research. One can expect their properties can unitghy to nonlinear dynamic26]. This way, the paper also
forbidden gaps in transmission spectra with strong resocontributes to the research of fractal structures, in general,
nances, which can localize light very effectively. In someCantor stacks being only a model.
manner the properties of such media remind of those of pe-
riodic ones with embedded defects, while possessing some
properties of random media as well. This idea was first dis-
covered during extensive research of wave phenomena in Prior to proceeding with the description of calculation
fractal lattices(namely, critical phenomena, spin, and perco-procedures we used, it is essential to touch briefly upon some
lation studieg that started quite a while agsee, e.g., Refs. underlying concepts. At first, let us note that deterministic
[7—9]) and remains worth close attention for modern sciencenonperiodic media lack a neat and generally accepted classi-
Recent investigations of the physical properties of variousication. The attempts have been made to classify such media
groups of these deterministic media, namely, substitutionajaking into account their singularity spectrdds], but it has
(Fibonacci, Thue-Morse, Rudin-Shapiro, and double-pgriodnot been thoroughly worked on yet. However, most authors
sequencefl0-20,22,23or model fractal structureCantor  agree on separating multilayered media accordingly to the
sets or Koch fracta)l§21-29 have revealed that such struc- construction algorithm, thus distinguishing two major
tures exhibit certain distinctive features compared to tradigroups, namely, theubstitutional latticegFibonacci, Thue-
tional (that is, periodic and randommedia. These features Morse, Rudin-Shapiro, ef¢.generated via repeated substitu-
have become an object of great interest for scientists. tion procedure, and thmodel fractal multilayer¢Cantor and
In the present paper, we focus on Cantor sets of dielectrikoch fractal$ that are constructed in a way similar to fractal
isotropic layers. The structures of this type are investigatedets[26]. It is also interesting to remark thgtiasiperiodic-
theoretically as well as experimentally. A one-dimensionality, in its mathematical definitioriquasiperiodic structures
(1D) problem of classical wave propagation through a me-are those composed of two or more incommensurate periods
dium with stepwise-changing parametelielectric constant [18,19), stands somewhat apart from both of the groups. For
for electromagnetic and material density for acoustic waves instance, Fibonacci multilayer stacksre quasiperiodic,
isomorphic to a one-dimensional problem of a quantum mewhile Rudin-Shapiro stackare not
chanical particle in a stepwise potential, is numerically
solved for Cantor structures.

Il. THEORETICAL BACKGROUND

A. Cantor-like multilayers

As was mentioned above, Cantor-like structures are frac-
*Email address: gaponen@imaph.bas-net.by tal nonperiodic multilayers generated in a way similar to the
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FIG. 2. A typical multilayer structure with the set of control
points and numbering conventions used in the calculation proce-
dure.

FIG. 1. Cantor multilayer structures for smaller numbersGof
andN. Dark and light areas indicate high- and low-index materials,most of structures under consideration are stratified media
respectively. with different sequences of layers, every method developed
for 1D inhomogeneous systems can be applied for this prob-
lem. There are several fundamental monografis—31]
where one can find all necessary information about standard
methods.

We restrict ourselves to discrete inhomogeneous systems,

Cantor set constructiof26]. Any Cantor multilayer is char-
acterized by two fundamental parameters, gemerator G
=3,5,7 ... and thegeneration number K 1,2,3 ... . Take
a seedto be a bulk of a dielectri¢labeledA). Then replace

the certain parts of the se¢determined by the value @) when inhomogeneity only occurs in a finite set of points,

with another dielectric materidlabeledB). Then repeat the
o . . _.namely, at borders between layers. The layers themselves are
same procedure over all the remaining inclusions of the ini;

tial material, as if they were seeds. When these steps a{%g:??ﬁgigfé;gg%ﬂ%:;g InfL)néttsv:ane:\W:Ietg?Posdver:;;i(ilge;;] d
recurredN times, the resulting structure will be a Cantor ' ay Y

X ) X guantum mechanio®r, from a mathematical standpoint, be-

multilayer characterized by a pair of humbeiG,lN), or, - .

as it will be called hereaftera (G,N) structure Sample tween Helmholtz and Scheinger equationsappears to be
structures are shown in Ei ral a,nd the stack const?uctiorather fruitful. The role of potential energy is now taken by a
methods can be easil undgérst,ood therefrom. As we see Hunction that solely depends on dielectric permittivity of me-
(G.N) Cantor multila gr consists @V lavers Fﬁrthermore 'dla. In multilayer structures the latter has a stepwise profile
= ) Ly - YErs. ) '’ with a limited number of discontinuity points, so it can be
simple scaling relations similar to those found in Ref6]

allow us to derive an expression for the fractal dimensionalhandled properly by calculating the jumps of certain field

) ; components at the layer interfaces. Thus nearly all existing
ity D ofa Cantpr set underlying & N) structure. It can be methods are based on matrix calcu(sse Refs[27-31)).
attributed to this structure and equals

In spite of presence of fairly rigorous and straightforward

G+1 matrix methods, we would like to introduce here a simpler

In 5 and therefore faster method of fields restoration, imple-
D=— " (1) mented deliberately for application in problems of 1D propa-
InG gation in nonperiodic stacks of isotropic layers. As will be

seen later, we only use “one half” of usual calculations
needed for deriving a transfer matrix. And although we had
to sacrifice the power of matrix algebra, we nevertheless tai-
) 4 lored another technique, which helped us to reduce the com-
geometrllcal one. For both calculatlo'ns and mea;qrementﬁuter time required for the calculations by ten times com-
layer thicknesses gre_chpsen to satlgfy thg conditiafy . _pared to procedure involving>44 matrices and by a couple
=nydy, the refractive indices of the 'd|elec.tr|cs used be]ngof times compared to 2 2 matrices, as regards transmission
equal ton, andny, and the geometrical thicknesses beinggnecira of Cantor multilayers. Thus, it enables us to investi-
equal tod; andd,, respe_ctlvely. The total geometrical thick- gate systems involving very large numbers of layers, which
ness of the stack then is is rather useful in many respects.

Finally, note that we have to allow for different velocity
of light in various media, so whenever the index of refraction
n+1, the optical thickness of a layer will differ from the

G+1\N

2

2

d,+| G

N_(G+1

N
}dz. (2 C. The calculation procedure

Consider a multilayer consisting ™ layers, the index of
refraction, and thickness of thj¢h layer in the stack defined

_ . _asn; andd;, respectively(see Fig. 2 A plane wave
Before we start up with the theoretical procedure used in

our calculations let us outline commonly used methods. As Eo(r,t)=Epexpliwt—ik-r), 3)

B. On the calculation of transmission spectra for multilayers
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characterized by vector amplitudg,, frequency w, and This restoration formulais key for all numerical proce-

wave vectoik is impinging on the stack normally to its sur- dure of field calculation. Its “mate” foB wave comes from

face.(For clarity, we will consider the normal incidence caseexpression(7) in exactly the same manner as E§) does

first, then we will provide a generalization for arbitrary angle from Eq. (5), so the restoration direction can be reversed

of incidence. Multiple reflections redistribute electromag-

r)etic fields in. the sta(;k. Due to the Iinearity of the media a EB(J-H):tgﬁﬂ)T(’jil),j[EBj—RJ-,(J-H)tB]—EFJ-]. 9)

field pattern in all points is a result of an interference be-

tween forward- and back-going waves, labeled furtheFby  Keeping in mind that it is necessary to calculate transmis-

andB. At any given point sion and reflection of the multilayer stack as well as to find

. , ) . out the field distribution inside each layer, suppose that the

E(r.t)=Epexpliot—ik-r)+Egexpliot+ik-r). (4  \ave is impinging onto the stack from one side ofihe left

Provided that these two waves are known at some giveq . Fig. 2. Then, certainly, the vectdEg(.1)=0. As-

. o . 'signing a temporary arbitrary nonzero value to the vector
point of a homogeneous layer, it is easy to restore the fiel o : : . .
T A F(n+1), itis possible to findEg, via Eq.(8). Then applica-
distribution in every point inside the homogeneous layer, ; , : )
. . . . ion of Eq.(7) gives the fieldEg,. Thus, both fields in the
simply by taking into account phase shifts. An expansion o th layer are obtained. One can see that application of Egs
the procedure to the whole structure leads us to a conclusio y ' bp as-

that it is enough to know the fields in one point for each of ) and (7) once again yields both waves in tha1)th

the two waves per layer. These poins can be chosen ey (IR PRer Ty 8 [OTRE ol 0,1
trarily, and a set of such points defined in a stack will bedistribution in the whole multilayer structure.

rpeofienrt;e(%r;[g fiﬁ?}ggovlv;\?elgtzsmv(;/eanc:tﬁﬁ ft)v:l?}";?/szsivzz) ?#Ch The final step consists in scale renormalization. As a re-
the immediate vicinity to each of the boundaries from bothéi:,?;;irfh ﬁﬂ?}f;i:giﬁ@;giﬁgﬁ; ggtflif'?teveet:]eee\gﬂ;ﬁgf

Iszlizesz thereof. This system of control points is depicted Inone, then reflection and transmission coefficients would sim-

Reflection  Rjy_1y, Rg-1) and  transmission Pl edqualEgy andEg,, 1), respectively. However, it is im-

Tii-1), T(j—1y; coefficients at the layer interfaces are a|soprobable that this condition is achievedls,, . 1) had been

well known. They are Fresnel's coefficierj3], which are crtlo§eq arbitrarily. So, ? unity ',Sr;[o be r?anua?lgzlsllgnﬁcto
polarization insensitive for normal incidence. the incident wave amplitude with rescaling of all other am-

Now consider the propagating waves inside gtrelayer. pIitudes{ includingEF(n+1)3 in the same proportion. If we
The forward waveEr; results, on one hand, from tifewave are not interested in the fields inside the layers such scaling
J 1 1

L - . o procedure results only in two divisions of scalar quantities.
g‘n((jj O?:ﬂ ela())/glretrra;]r;snrgItIESnEh;?;%Ca%@ é#é@telgteg?ae The generalization of the described procedure for an ob-

Ay C o lique incidence case is rather straightforward. The only thing
1) interface(which is the same boundarySo B, is that has to be done is to replace Fresnel's reflection and

(5)  transmission coefficients for normal incidence with those for
oblique incidencég28]. However, in this case different wave
Phase shifts are taken into account by the spatial evolupolarizations(TE and TM vyield different coefficients, so it

Eri=T(-1yitri-1EriG-1) T Rjr-ntriEs;j -

tion factorstg;, which are is necessary to write out formul#s), (7)—(9) separately for
each polarization. The phase fact6éy will also change, tak-
Lo ing into account the change in the layer thicknesses con-
tFJ:eXF< —| _dJ) (6)  nected with the inclined propagation in the medium.

The similar considerations lead to tBewave field in the I1l. SCALABILITY OF OPTICAL SPECTRA

corresponding control point inside théh layer _ o
At first, let us compare the transmission spectra of Cantor

Egj=T(+1yte(j+1Es(+1)T R+ 1)tsjErj - (7)  stacks with those of well-studied periodic multilayers. For
comparison, it is natural to use stacks with the same number
Here the phase factag; differs fromtg; (6) only by the  of layers and it is reasonable to choose the model materials
sign of the exponent index. with high refractive index contrashg/n,=2.3) in order to
Equations(5) and (7) allow to calculate the field in any clearly demonstrate all the similarities and differences in
control point of the stack using the field in two neighboring spectral properties. Since our stacks are quarter wave, the
points. spectra will be periodic with period equal tag, wherewg
Now assume that the field is known in both control pointsjs central frequency. Figure 3 shows one period of spectrum
inside thejth layer. Then thd= field that must emerge from for such structures.
the previous layer can easily be derived based on the inver- As follows from general considerations, both graphs ex-
sion of Eq.(5). A simple algebra with this equation yields hibit stop bandsor band gap$ and both graphs have the
finally, same number of transmission pedkesonancesper period.
. 1 However, the distribution of peaks is completely different.
Eri-0=te(-1 T ilEri —Rig-ntriEsjl- (8 The overall width of the forbidden gap is larger for the Can-
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1 ‘ ‘ ' generality thatN,;>N,.) So, this scalability is characteristic
to any Cantor-like structure. Figures 4 and 5 show this for
0.8 G=3 andG=5 structures.
a We state that scalability of the spectra results from the
2 06 self-similarity of the structures. AnyQ,N) Cantor structure
é encompasses the structures of all previous generatgees
g 04 Fig. 1). Besides, the scaling factor is connected v@andN
= in exactly the same way. It is natural to expect that this
“structural scalability” will result in “spectral scalability.”
0.2 However, G,N—1) structures are contained in & (N)
a structure multiple timegtwo for G= 3, three forG=5, etc),

while the spectrum is contained ortyice as can be seen in
Figs. 4 and 5. So, the passing wave is insensitive to the
number of substructures within the whole stack from the
point of view of scalability properties. s sensitive to that

0 05 1 15 2
Normalized frequency

! number in some other way, which will be described below.
0.8
.S 06 IV. SEQUENTIAL SPLITTING
é ' Note[see Figs. &) and Fa)] that some resonances in the
§ 04 Cantor stack spectra turn out to be single peaks, while other
B are multiplets(e.g., doublets This is a manifestation of an-
other property of Cantor multilayers, which is worth close
0.2 attention.
b k We have found a@,N) stack spectrum has multiplets at

the frequencies where &(N— 1) stack spectrum has single
peaks, while new peakssingle or multiplets in a (G,N)
correspond to no peaks in &(N—1) and “appear” in the
FIG. 3. Transmission spectra for a Cantor multilay&), G forbidden gaps of the latter structure [dds increased. The
=3, N=2, 9 layer$ and a periodic multilayef(b), 9 layerg in number of components in the multiplets equaG+1)/2,
comparison. Note the width of a forbidden gap, the presence oéind, of course, the total number of peaks in one period
sharp resonance peaks inside the gap, and peak distribution inegjuals the number of layers, i.&". As we see in Fig. 6 for
Cantor spectrum. G=3 and 5, splitting occurs each time we increase the gen-
eration. That is why we have termed this propesgguential
tor structure, but the latter has sharp resonances inside tlsplitting.
gap. The reason of such splitting is understood from the point
These properties have the same underlying physical re®f view of self-similarity of Cantor structures regarded in
sons as those of a Fabry+Bedielectric microcavity. We can terms of coupled cavities. As the Cantor algorithm generates
regard a Cantor structure as a periodic multilayer with a large fractal structure, ahyth generation stack contains all the
number of embedded defects. It is knojilr that a defect in  structures withN<N, and the sam&. For example, a®
a periodic structure results indefect statssomewhere inthe =3,N=4) stack contains two inclusions o5& 3, N=3)
spectrum, causing one or more transmission peaks to shiftacks. Then we can make a statement that each single peak
into the “forbidden” area and other peaks to rearrange. It isin the spectrum of &3, 4) stack, being a resonant mode
also known that such a defect state can be identified by mtroduced by the central “cavity'(or layep, splits into a
strong field localization inside the defect at the correspondeoublet because there are two such cavities (i, &) stack.
ing frequency. Two new peaks have to appear in tlde 4) spectrum, corre-
Based on the analysis of spectra for a large variety oSponding to the central cavity in this structure, and those
Cantor structures, we have found that the spectra of all Carpeaks must be single, as there is only one such cavity
tor structures exhibit apparestalability. That is, thewhole  present. It is obvious that the same reasoning applies to any
spectrum of a G,N) stack appears as a part of &,(\ generation, so all single peaks in the spectra o} 3truc-
+1) stack spectrum. If we magnify the central part of thetures will split into doublets in the (Bl+ 1) structures’ spec-
latter by a factor ofG, it will match the former spectrum tra. Analogous considerations lead to the conclusion that in
almost perfectly. the case of=5 single peaks will split into triplets and new
We have found that this property holds for a@yand the resonances will appear as doublets, in full accordance with
factor by which one has to enlarge the central part of the~ig. 6(b). Generalization of this statement results in a for-
(G,N;) stack spectrum for matching with that oG (N,) mula for the number of componeng,;; in multiplets that
stack [termed thescaling factorbetween the G,N;) and  have just split and for the number of componeBts,, in
(G,N,) spectra is GN17 N2, (It is assumed without loss of newly appearing multiplets, respectively,

0 05 I 1.5 2
Normalized frequency
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g
§0.4_ FIG. 7. Field intensity profiles for a newly appeared single peak
= ina (3,2)(a) and (3,3)(b), for a split doublet in a (3,3]c), and for
0.2 N=3 a newly appeared doublet in a (5,@). z is the position inside the
N=2 k structure in the direction normal to the layer interfaces.
0.81 0.82 0.83 0.84 N . .
Normalized frequency the individual multiplet components, it is only observeuat-

side (and betweenlocalization areas. This indicates that, for
FIG. 6. Sequential splitting fo6=3 (a) andG=5 (b). Note  jnstance, in split multiplets the substructures are responsible
that the number of components in each multiplet is equal to thatoy the peak itself while the binding causes it to split. Note
given by Egs.(10) and (11). Also note that the half width of a  thay this splitting property is essentially the same as energy
resonance is almost the same before and after splitting. level splitting in adjacent quantum wells and bound pendu-
lums in mechanics, and resonance splitting in connected
electricalLC circuits in electricity.
Seuiit= G+1 (10) Moreover, a closer look at thresonance mapf the struc-
plit™ 2 ture, i.e., a distribution of resonance peaks along the spec-
trum in dependence on the generation numisee Fig. 8,
lets one see those points appear at determined places and
constitute a definite pattern. This pattern apparently has scal-
ability. If it possesses self-similarity as well, it would mean
G-1 that the spectrum of transmission bands represents a fractal
Snew:T- (11 set. This property is already obtained for quasiperiodic mul-
tilayers, e.g., a resonance map for Fibonacci stacks is known
i ) to form a Cantor sdtL0]. It may well turn out to be that such
These relations state another connection between the gegehavior distinguishes this kind of media from both periodic

metrical and spectral properties of Cantor multilayers. Beand random ones, where no fractality at all is observed.
sides, note the half width of a peak is almost unchanged

dur|r_19 splitting, while the ext_ernal “slopgs" of the whole V. EXPERIMENT

multiplet become steepgsee Fig. 6a)], and its envelope can

be roughly characterized as “rectangular.” This effect can be Substitutional multilayer stacks of various typéBi-

made use of in optical band pass filters. bonacci, Thue-Morse, ejchave been experimentally inves-
As an additional confirmation of the above-mentionedtigated(see, e.g., Ref.19] and references thergirHowever,

correlation, we have plotted the field intensity profilgg {2,  to the best of our knowledge, only analytical and numerical

to be exact, since it is this field component that undergoes nstudies have been performed for model fractal structures.

jumps at layer interfacg®8]) for the frequencies that corre- Here, we provide the experimental results for Cantor struc-

spond to the resonance pedksmponents of both split mul- tures with smaller values d& andN.

tiplets and new ongsThe field intensity for a multiplet is We fabricated a lattice consisting of MdFg (n;

shown to be actually localized in the regioftavities that =1.34) and ZnS 1§,=2.3) using layer by layer vacuum

have been claimed responsible for the resonance peak at tdeposition on a glass substrate, which is a standard optical

relevant frequencysee Fig. J. Thus, for the newly appeared technology. The optical thickness of every layer was made to

multiplets the energy is strongly localized in newly appear-equal 600 nm/4, i.e., dn;=4d,n,=600 nm, whered,

ing layers(binding areas In split multiplets there is a pro- andd, are geometrical thicknesses of the layers. Transmis-

nounced localization in the previous generation substrucsion spectra were measured using a “Cary 500" spectropho-

tures. As regards the difference between the field profiles forometer.

and
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g R FIG. 9. Experimentally measureé), (b) and calculatedc), (d)
s . ¢ transmission spectra for Cantor structures v@ts 3, N=2 (a), (¢
'z 0.75 . and N=3 (b), (d). The materials used were MdFg (n;=1.34)
. [ ]

and ZnS (,=2.3).

small fluctuations in layer thicknesses inevitable during
vacuum deposition, an(ii ) influence of the substrate. Thus,
we have shown that the above-mentioned effects take place
in real media, having at the same time checked the calcula-
tion procedure presented.

0.5 .

0.25

VI. SUMMARY AND CONCLUSIONS

To summarize, a wide variety of Cantor multilayer struc-
tures is systematically analyzed with respect to a resonant
wave propagation. A simple and efficient numerical tech-
Generation number N nique, which allows to calculate transmission and reflection

FIG. 8. Resonance mafrequencies of resonance peaks versusSPeCtra, as well as field intensity at any point inside the stack,
generation numbgffor a Cantor structure witks=3. One can see IS proposed. Using this technique, we found that transmis-
that new dots appear in a definite location, but seem to cover thgion spectra possess two distinctive propertseslability
whole frequency range. Thus, the problem of self-similarity of theand sequential splitting Both properties result from self-
transmission band spectra for Cantor structures requires further insimilarity of Cantor multilayers, and illustrate a clear and
vestigations. direct correlation between the geometry of a structure and

the spectra of resonant transmission. The spatial field distri-

As can be seen from Fig. 9, a good agreement with theobution patterns fully confirm the splitting mechanism, and
retically predicted spectrum is obtained. A formation of aside from theoretical interest, these revealed properties can
above-mentioned resonance transmission peaks is cleare useful for certain practical application, e.g., narrow band
seen, although all the effects are less pronounced due to tipass and band reject filters. The experimental studies natu-
smaller contrast in refraction indices compared to that usedally complete the work done on Cantor multilayers, con-
for calculations for Fig. 4. This is the case because in nufirming the numerical results obtained.
merical calculations the choice of the refraction indices for The established connection between geometrical and
the media is not confined only to the ones suitable for exspectral properties leads to another consideration. There are
perimental lattice fabrication. structures shown to have fractal self-similar transmission

The deviation of experimental spectryffig. Aa,b] from  spectraFibonacci lattices at least, see Rgf0]), and Cantor
the calculated ongFig. 9c,d)], which mainly occurs at the structures are geometrically fractal. Putting these facts to-
edges of the spectral interval examined, is cause@)bgb-  gether, this may mean that spectra of Cantor structures are
sorption and dispersion effects of the materials ugéd, fractal as well. However, self-similarity in not clearly pro-
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nounced in Cantor spectra, as is the case with Fibonacci, and ACKNOWLEDGMENTS

the peak locations on the resonance nsge Fig. 8 do not

at all remind of Cantor dust. Evidently, this problem requires  Helpful discussions with D. N. Chigrin are acknowledged.
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