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Propagation of classical waves in nonperiodic media: Scaling properties of an optical Cantor filte
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Wave propagation through a subclass of deterministic nonperiodic media, namely, fractal Cantor multilayer
structures are investigated theoretically as well as experimentally. Transmission spectra of Cantor structures are
found to have two distinctive properties~scalabilityandsequential splitting! closely related to the geometrical
peculiarities of the multilayers. A systematic correlation between structural self-similarity and spectral regu-
larities of Cantor multilayers is established.
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I. INTRODUCTION

As regards the problem of wave propagation in comp
media, the last decade was most prominent in establis
the properties of both perfectly periodic and absolutely r
dom media. On one hand, it was shown that internal per
icity underlying the design of photonic crystals gives t
possibility to obtain complete and absolute photonic ba
gap for optical radiation@1–3#, thus providing vast contribu
tion to optoelectronic applications, and on the other hand,
idea of light localization in random media has been inte
sively explored. This idea was greatly inspired by the fi
theories and experiments@4–6#.

Nonperiodic but deterministic media constitute a sepa
field of research. One can expect their properties can u
forbidden gaps in transmission spectra with strong re
nances, which can localize light very effectively. In som
manner the properties of such media remind of those of
riodic ones with embedded defects, while possessing s
properties of random media as well. This idea was first d
covered during extensive research of wave phenomen
fractal lattices~namely, critical phenomena, spin, and perc
lation studies! that started quite a while ago~see, e.g., Refs
@7–9#! and remains worth close attention for modern scien

Recent investigations of the physical properties of vario
groups of these deterministic media, namely, substitutio
~Fibonacci, Thue-Morse, Rudin-Shapiro, and double-peri!
sequences@10–20,22,23# or model fractal structures~Cantor
sets or Koch fractals! @21–25# have revealed that such stru
tures exhibit certain distinctive features compared to tra
tional ~that is, periodic and random! media. These feature
have become an object of great interest for scientists.

In the present paper, we focus on Cantor sets of dielec
isotropic layers. The structures of this type are investiga
theoretically as well as experimentally. A one-dimensio
~1D! problem of classical wave propagation through a m
dium with stepwise-changing parameter~dielectric constant
for electromagnetic and material density for acoustic wav!,
isomorphic to a one-dimensional problem of a quantum m
chanical particle in a stepwise potential, is numerica
solved for Cantor structures.

*Email address: gaponen@imaph.bas-net.by
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This paper is organized as follows. First, in Sec. II,
reader is introduced to the theoretical background, such
details on Cantor multilayers. There we also describe
simple but effective technique used for computational pro
dures. The distinctive properties found as a result of
modeling and the discussion thereof is what follows in Se
III and IV. Finally, in Sec. V, we present experimental resu
and provide comparison with theoretical ones. Section
summarizes the paper.

It is also worth noting here that fractal structures, wh
being relatively new to physical research if compared to c
tinuous media and thus investigated not as thoroughly
desired, represent an object of particular interest for mod
science. Fractal objects are found everywhere, from geo
phy to nonlinear dynamics@26#. This way, the paper also
contributes to the research of fractal structures, in gene
Cantor stacks being only a model.

II. THEORETICAL BACKGROUND

Prior to proceeding with the description of calculatio
procedures we used, it is essential to touch briefly upon so
underlying concepts. At first, let us note that determinis
nonperiodic media lack a neat and generally accepted cla
fication. The attempts have been made to classify such m
taking into account their singularity spectrum@18#, but it has
not been thoroughly worked on yet. However, most auth
agree on separating multilayered media accordingly to
construction algorithm, thus distinguishing two maj
groups, namely, thesubstitutional lattices~Fibonacci, Thue-
Morse, Rudin-Shapiro, etc.!, generated via repeated substit
tion procedure, and themodel fractal multilayers~Cantor and
Koch fractals! that are constructed in a way similar to fract
sets@26#. It is also interesting to remark thatquasiperiodic-
ity, in its mathematical definition~quasiperiodic structures
are those composed of two or more incommensurate per
@18,19#!, stands somewhat apart from both of the groups.
instance, Fibonacci multilayer stacksare quasiperiodic,
while Rudin-Shapiro stacksare not.

A. Cantor-like multilayers

As was mentioned above, Cantor-like structures are fr
tal nonperiodic multilayers generated in a way similar to t
©2002 The American Physical Society21-1
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Cantor set construction@26#. Any Cantor multilayer is char-
acterized by two fundamental parameters, thegenerator G
53,5,7, . . . and thegeneration number N51,2,3, . . . . Take
a seedto be a bulk of a dielectric~labeledA). Then replace
the certain parts of the seed~determined by the value ofG)
with another dielectric material~labeledB). Then repeat the
same procedure over all the remaining inclusions of the
tial material, as if they were seeds. When these steps
recurredN times, the resulting structure will be a Cant
multilayer characterized by a pair of numbers (G,N), or,
as it will be called hereafter,a (G,N) structure. Sample
structures are shown in Fig. 1, and the stack construc
methods can be easily understood therefrom. As we se
(G,N) Cantor multilayer consists ofGN layers. Furthermore
simple scaling relations similar to those found in Ref.@26#
allow us to derive an expression for the fractal dimension
ity D of a Cantor set underlying a (G,N) structure. It can be
attributed to this structure and equals

D5

lnS G11

2 D
ln G

. ~1!

Finally, note that we have to allow for different velocit
of light in various media, so whenever the index of refracti
nÞ1, the optical thickness of a layer will differ from th
geometrical one. For both calculations and measureme
layer thicknesses are chosen to satisfy the conditionn1d1
5n2d2, the refractive indices of the dielectrics used bei
equal ton1 and n2, and the geometrical thicknesses bei
equal tod1 andd2, respectively. The total geometrical thick
ness of the stack then is

d5S G11

2 D N

d11FGN2S G11

2 D NGd2 . ~2!

B. On the calculation of transmission spectra for multilayers

Before we start up with the theoretical procedure used
our calculations let us outline commonly used methods.

FIG. 1. Cantor multilayer structures for smaller numbers ofG
andN. Dark and light areas indicate high- and low-index materia
respectively.
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most of structures under consideration are stratified me
with different sequences of layers, every method develo
for 1D inhomogeneous systems can be applied for this pr
lem. There are several fundamental monographs@27–31#
where one can find all necessary information about stand
methods.

We restrict ourselves to discrete inhomogeneous syste
when inhomogeneity only occurs in a finite set of poin
namely, at borders between layers. The layers themselve
homogeneous, isotropic, and infinite in two transverse dir
tions. In such cases an analogy between electrodynamics
quantum mechanics~or, from a mathematical standpoint, b
tween Helmholtz and Schro¨dinger equations! appears to be
rather fruitful. The role of potential energy is now taken by
function that solely depends on dielectric permittivity of m
dia. In multilayer structures the latter has a stepwise pro
with a limited number of discontinuity points, so it can b
handled properly by calculating the jumps of certain fie
components at the layer interfaces. Thus nearly all exis
methods are based on matrix calculus~see Refs.@27–31#!.

In spite of presence of fairly rigorous and straightforwa
matrix methods, we would like to introduce here a simp
and therefore faster method of fields restoration, imp
mented deliberately for application in problems of 1D prop
gation in nonperiodic stacks of isotropic layers. As will b
seen later, we only use ‘‘one half’’ of usual calculation
needed for deriving a transfer matrix. And although we h
to sacrifice the power of matrix algebra, we nevertheless
lored another technique, which helped us to reduce the c
puter time required for the calculations by ten times co
pared to procedure involving 434 matrices and by a coupl
of times compared to 232 matrices, as regards transmissi
spectra of Cantor multilayers. Thus, it enables us to inve
gate systems involving very large numbers of layers, wh
is rather useful in many respects.

C. The calculation procedure

Consider a multilayer consisting ofM layers, the index of
refraction, and thickness of thej th layer in the stack defined
asnj anddj , respectively~see Fig. 2!. A plane wave

E0~r ,t !5E0 exp~ ivt2 ik•r !, ~3!

,

FIG. 2. A typical multilayer structure with the set of contro
points and numbering conventions used in the calculation pro
dure.
1-2



r-
se
le
-

e
y

ve
e

ye
o

si
o
r

be
h

th
i

so

ol

ng

ts

ve
s

is-
nd
the

tor

qs.

the
ld

re-
of

to
im-

m-

ling
s.
ob-
ing
and
for
e

on-

tor
or
ber

rials

in
the

um

x-
e

nt.
n-

PROPAGATION OF CLASSICAL WAVES IN . . . PHYSICAL REVIEW E65 036621
characterized by vector amplitudeE0, frequency v, and
wave vectork is impinging on the stack normally to its su
face.~For clarity, we will consider the normal incidence ca
first, then we will provide a generalization for arbitrary ang
of incidence!. Multiple reflections redistribute electromag
netic fields in the stack. Due to the linearity of the media
field pattern in all points is a result of an interference b
tween forward- and back-going waves, labeled further bF
andB. At any given point

E~r ,t !5EF exp~ ivt2 ik•r !1EB exp~ ivt1 ik•r !. ~4!

Provided that these two waves are known at some gi
point of a homogeneous layer, it is easy to restore the fi
distribution in every point inside the homogeneous la
simply by taking into account phase shifts. An expansion
the procedure to the whole structure leads us to a conclu
that it is enough to know the fields in one point for each
the two waves per layer. These points can be chosen a
trarily, and a set of such points defined in a stack will
referred to ascontrol points. We chose two sets of suc
points~one for theF waves and another for theB waves! in
the immediate vicinity to each of the boundaries from bo
sides thereof. This system of control points is depicted
Fig. 2.

Reflection Rj /( j 21) , R( j 21)/ j and transmission
Tj /( j 21) , T( j 21)/ j coefficients at the layer interfaces are al
well known. They are Fresnel’s coefficients@28#, which are
polarization insensitive for normal incidence.

Now consider the propagating waves inside thej th layer.
The forward waveEF j results, on one hand, from theF wave
in ( j 21)th layer transmitted through the (j 21)/ j interface
and, on the other hand, from theB wave reflected atj /( j
21) interface~which is the same boundary!. SoEF j is

EF j5T( j 21)/ j tF~ j 21!EF( j 21)1Rj /( j 21)tF jEB j . ~5!

Phase shifts are taken into account by the spatial ev
tion factorstF j , which are

tF j5expS 2 i
v

c
dj D . ~6!

The similar considerations lead to theB wave field in the
corresponding control point inside thej th layer

EB j5T( j 11)/ j tB~ j 11!EB( j 11)1Rj /( j 11)tB jEF j . ~7!

Here the phase factortB j differs from tF j ~6! only by the
sign of the exponent index.

Equations~5! and ~7! allow to calculate the field in any
control point of the stack using the field in two neighbori
points.

Now assume that the field is known in both control poin
inside thej th layer. Then theF field that must emerge from
the previous layer can easily be derived based on the in
sion of Eq.~5!. A simple algebra with this equation yield
finally,

EF( j 21)5tF~ j 21!
21 T( j 21)/ j

21 @EF j2Rj /( j 21)tF jEB j#. ~8!
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This restoration formulais key for all numerical proce-
dure of field calculation. Its ‘‘mate’’ forB wave comes from
expression~7! in exactly the same manner as Eq.~8! does
from Eq. ~5!, so the restoration direction can be reversed

EB( j 11)5tB~ j 11!
21 T( j 11)/ j

21 @EB j2Rj /( j 11)tB jEF j #. ~9!

Keeping in mind that it is necessary to calculate transm
sion and reflection of the multilayer stack as well as to fi
out the field distribution inside each layer, suppose that
wave is impinging onto the stack from one side only~the left
one in Fig. 2!. Then, certainly, the vectorEB(n11)50. As-
signing a temporary arbitrary nonzero value to the vec
EF(n11) , it is possible to findEFn via Eq. ~8!. Then applica-
tion of Eq. ~7! gives the fieldEBn . Thus, both fields in the
nth layer are obtained. One can see that application of E
~8! and ~7! once again yields both waves in the (n21)th
layer. Consequent movement from the rightmost layer to
leftmost allows to restore the full picture of relative fie
distribution in the whole multilayer structure.

The final step consists in scale renormalization. As a
sult of the whole calculation, we have obtained the value
EF0, which is the incident wave amplitude. If it were equal
one, then reflection and transmission coefficients would s
ply equalEB0

2 andEF(n11)
2 , respectively. However, it is im-

probable that this condition is achieved asEF(n11) had been
chosen arbitrarily. So, a unity is to be manuallyassignedto
the incident wave amplitude with rescaling of all other a
plitudes, includingEF(n11) , in the same proportion. If we
are not interested in the fields inside the layers such sca
procedure results only in two divisions of scalar quantitie

The generalization of the described procedure for an
lique incidence case is rather straightforward. The only th
that has to be done is to replace Fresnel’s reflection
transmission coefficients for normal incidence with those
oblique incidence@28#. However, in this case different wav
polarizations~TE and TM! yield different coefficients, so it
is necessary to write out formulas~5!, ~7!–~9! separately for
each polarization. The phase factor~6! will also change, tak-
ing into account the change in the layer thicknesses c
nected with the inclined propagation in the medium.

III. SCALABILITY OF OPTICAL SPECTRA

At first, let us compare the transmission spectra of Can
stacks with those of well-studied periodic multilayers. F
comparison, it is natural to use stacks with the same num
of layers and it is reasonable to choose the model mate
with high refractive index contrast (nB /nA52.3) in order to
clearly demonstrate all the similarities and differences
spectral properties. Since our stacks are quarter wave,
spectra will be periodic with period equal to 2v0, wherev0
is central frequency. Figure 3 shows one period of spectr
for such structures.

As follows from general considerations, both graphs e
hibit stop bands~or band gaps! and both graphs have th
same number of transmission peaks~resonances! per period.
However, the distribution of peaks is completely differe
The overall width of the forbidden gap is larger for the Ca
1-3
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tor structure, but the latter has sharp resonances inside
gap.

These properties have the same underlying physical
sons as those of a Fabry-Pe´rot dielectric microcavity. We can
regard a Cantor structure as a periodic multilayer with a la
number of embedded defects. It is known@1# that a defect in
a periodic structure results in adefect statesomewhere in the
spectrum, causing one or more transmission peaks to
into the ‘‘forbidden’’ area and other peaks to rearrange. I
also known that such a defect state can be identified b
strong field localization inside the defect at the correspo
ing frequency.

Based on the analysis of spectra for a large variety
Cantor structures, we have found that the spectra of all C
tor structures exhibit apparentscalability. That is, thewhole
spectrum of a (G,N) stack appears as a part of a (G,N
11) stack spectrum. If we magnify the central part of t
latter by a factor ofG, it will match the former spectrum
almost perfectly.

We have found that this property holds for anyG, and the
factor by which one has to enlarge the central part of
(G,N1) stack spectrum for matching with that of (G,N2)
stack @termed thescaling factor between the (G,N1) and
(G,N2) spectra# is GN12N2. ~It is assumed without loss o

FIG. 3. Transmission spectra for a Cantor multilayer@~a!, G
53, N52, 9 layers# and a periodic multilayer@~b!, 9 layers# in
comparison. Note the width of a forbidden gap, the presence
sharp resonance peaks inside the gap, and peak distribution
Cantor spectrum.
03662
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generality thatN1.N2.! So, this scalability is characteristi
to any Cantor-like structure. Figures 4 and 5 show this f
G53 andG55 structures.

We state that scalability of the spectra results from
self-similarity of the structures. Any (G,N) Cantor structure
encompasses the structures of all previous generations~see
Fig. 1!. Besides, the scaling factor is connected withG andN
in exactly the same way. It is natural to expect that t
‘‘structural scalability’’ will result in ‘‘spectral scalability.’’
However, (G,N21) structures are contained in a (G,N)
structure multiple times~two for G53, three forG55, etc.!,
while the spectrum is contained onlyonce, as can be seen in
Figs. 4 and 5. So, the passing wave is insensitive to
number of substructures within the whole stack from t
point of view of scalability properties. Itis sensitive to that
number in some other way, which will be described belo

IV. SEQUENTIAL SPLITTING

Note @see Figs. 4~a! and 5~a!# that some resonances in th
Cantor stack spectra turn out to be single peaks, while o
are multiplets~e.g., doublets!. This is a manifestation of an
other property of Cantor multilayers, which is worth clo
attention.

We have found a (G,N) stack spectrum has multiplets a
the frequencies where a (G,N21) stack spectrum has singl
peaks, while new peaks~single or multiplets! in a (G,N)
correspond to no peaks in a (G,N21) and ‘‘appear’’ in the
forbidden gaps of the latter structure asN is increased. The
number of components in the multiplets equals (G11)/2,
and, of course, the total number of peaks in one per
equals the number of layers, i.e.,GN. As we see in Fig. 6 for
G53 and 5, splitting occurs each time we increase the g
eration. That is why we have termed this propertysequential
splitting.

The reason of such splitting is understood from the po
of view of self-similarity of Cantor structures regarded
terms of coupled cavities. As the Cantor algorithm genera
a fractal structure, anN0th generation stack contains all th
structures withN,N0 and the sameG. For example, a (G
53,N54) stack contains two inclusions of (G53, N53)
stacks. Then we can make a statement that each single
in the spectrum of a~3, 4! stack, being a resonant mod
introduced by the central ‘‘cavity’’~or layer!, splits into a
doublet because there are two such cavities in a~4, 4! stack.
Two new peaks have to appear in the~4, 4! spectrum, corre-
sponding to the central cavity in this structure, and tho
peaks must be single, as there is only one such ca
present. It is obvious that the same reasoning applies to
generation, so all single peaks in the spectra of (3,N) struc-
tures will split into doublets in the (3,N11) structures’ spec-
tra. Analogous considerations lead to the conclusion tha
the case ofG55 single peaks will split into triplets and new
resonances will appear as doublets, in full accordance w
Fig. 6~b!. Generalization of this statement results in a fo
mula for the number of componentsSsplit in multiplets that
have just split and for the number of componentsSnew in
newly appearing multiplets, respectively,

of
a

1-4
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FIG. 4. Scalability of optical spectra
for Cantor multilayers (G53): the full
period of a (3,4) spectrum~a!; the cen-
tral part of it magnified in the fre-
quency scale by 3~b! versus the full
period of a (3,3) spectrum~c!; the cen-
tral part of (3,4) magnified by 9532

~d!; the central part of (3,3) magnified
by 3 ~e!; the full period of a (3,2) spec-
trum ~f!. Compare the looks of~b! and
~c!, as well as of~d!, ~e!, and~f!.

FIG. 5. Scalability of optical spectra
for Cantor multilayers (G55): the full
period of a (3,4) spectrum~a! and the
central part of it magnified in the fre
quency scale by 5~b! versus the full
period of a (3,3) spectrum~c!. Com-
paring the looks of~b! and~c!, one can
see that the spectra are scalable w
the factor equal toG.
036621-5
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Ssplit5
G11

2
~10!

and

Snew5
G21

2
. ~11!

These relations state another connection between the
metrical and spectral properties of Cantor multilayers. B
sides, note the half width of a peak is almost unchan
during splitting, while the external ‘‘slopes’’ of the whol
multiplet become steeper@see Fig. 6~a!#, and its envelope can
be roughly characterized as ‘‘rectangular.’’ This effect can
made use of in optical band pass filters.

As an additional confirmation of the above-mention
correlation, we have plotted the field intensity profiles (uEtu2,
to be exact, since it is this field component that undergoes
jumps at layer interfaces@28#! for the frequencies that corre
spond to the resonance peaks~components of both split mul
tiplets and new ones!. The field intensity for a multiplet is
shown to be actually localized in the regions~cavities! that
have been claimed responsible for the resonance peak a
relevant frequency~see Fig. 7!. Thus, for the newly appeare
multiplets the energy is strongly localized in newly appe
ing layers~binding areas!. In split multiplets there is a pro
nounced localization in the previous generation substr
tures. As regards the difference between the field profiles

FIG. 6. Sequential splitting forG53 ~a! and G55 ~b!. Note
that the number of components in each multiplet is equal to
given by Eqs.~10! and ~11!. Also note that the half width of a
resonance is almost the same before and after splitting.
03662
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the individual multiplet components, it is only observedout-
side~and between! localization areas. This indicates that, f
instance, in split multiplets the substructures are respons
for the peak itself while the binding causes it to split. No
that this splitting property is essentially the same as ene
level splitting in adjacent quantum wells and bound pen
lums in mechanics, and resonance splitting in connec
electricalLC circuits in electricity.

Moreover, a closer look at theresonance mapof the struc-
ture, i.e., a distribution of resonance peaks along the sp
trum in dependence on the generation number~see Fig. 8!,
lets one see those points appear at determined places
constitute a definite pattern. This pattern apparently has s
ability. If it possesses self-similarity as well, it would mea
that the spectrum of transmission bands represents a fr
set. This property is already obtained for quasiperiodic m
tilayers, e.g., a resonance map for Fibonacci stacks is kn
to form a Cantor set@10#. It may well turn out to be that such
behavior distinguishes this kind of media from both period
and random ones, where no fractality at all is observed.

V. EXPERIMENT

Substitutional multilayer stacks of various types~Fi-
bonacci, Thue-Morse, etc.! have been experimentally inves
tigated~see, e.g., Ref.@19# and references therein!. However,
to the best of our knowledge, only analytical and numeri
studies have been performed for model fractal structu
Here, we provide the experimental results for Cantor str
tures with smaller values ofG andN.

We fabricated a lattice consisting of Na3AlF6 (n1
51.34) and ZnS (n252.3) using layer by layer vacuum
deposition on a glass substrate, which is a standard op
technology. The optical thickness of every layer was made
equal 600 nm/4, i.e., 4d1n154d2n25600 nm, whered1
and d2 are geometrical thicknesses of the layers. Transm
sion spectra were measured using a ‘‘Cary 500’’ spectrop
tometer.

at

FIG. 7. Field intensity profiles for a newly appeared single pe
in a (3,2)~a! and (3,3)~b!, for a split doublet in a (3,3)~c!, and for
a newly appeared doublet in a (5,2)~d!. z is the position inside the
structure in the direction normal to the layer interfaces.
1-6
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PROPAGATION OF CLASSICAL WAVES IN . . . PHYSICAL REVIEW E65 036621
As can be seen from Fig. 9, a good agreement with th
retically predicted spectrum is obtained. A formation
above-mentioned resonance transmission peaks is cle
seen, although all the effects are less pronounced due to
smaller contrast in refraction indices compared to that u
for calculations for Fig. 4. This is the case because in
merical calculations the choice of the refraction indices
the media is not confined only to the ones suitable for
perimental lattice fabrication.

The deviation of experimental spectrum@Fig. 9~a,b!# from
the calculated one@Fig. 9~c,d!#, which mainly occurs at the
edges of the spectral interval examined, is caused by~i! ab-
sorption and dispersion effects of the materials used,~ii !

FIG. 8. Resonance map~frequencies of resonance peaks vers
generation number! for a Cantor structure withG53. One can see
that new dots appear in a definite location, but seem to cover
whole frequency range. Thus, the problem of self-similarity of
transmission band spectra for Cantor structures requires furthe
vestigations.
03662
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small fluctuations in layer thicknesses inevitable duri
vacuum deposition, and~iii ! influence of the substrate. Thu
we have shown that the above-mentioned effects take p
in real media, having at the same time checked the calc
tion procedure presented.

VI. SUMMARY AND CONCLUSIONS

To summarize, a wide variety of Cantor multilayer stru
tures is systematically analyzed with respect to a reson
wave propagation. A simple and efficient numerical tec
nique, which allows to calculate transmission and reflect
spectra, as well as field intensity at any point inside the sta
is proposed. Using this technique, we found that transm
sion spectra possess two distinctive properties,scalability
and sequential splitting. Both properties result from self
similarity of Cantor multilayers, and illustrate a clear an
direct correlation between the geometry of a structure
the spectra of resonant transmission. The spatial field di
bution patterns fully confirm the splitting mechanism, a
aside from theoretical interest, these revealed properties
be useful for certain practical application, e.g., narrow ba
pass and band reject filters. The experimental studies n
rally complete the work done on Cantor multilayers, co
firming the numerical results obtained.

The established connection between geometrical
spectral properties leads to another consideration. There
structures shown to have fractal self-similar transmiss
spectra~Fibonacci lattices at least, see Ref.@10#!, and Cantor
structures are geometrically fractal. Putting these facts
gether, this may mean that spectra of Cantor structures
fractal as well. However, self-similarity in not clearly pro

s

e

in-

FIG. 9. Experimentally measured~a!, ~b! and calculated~c!, ~d!
transmission spectra for Cantor structures withG53, N52 ~a!, ~c!
and N53 ~b!, ~d!. The materials used were Na3AlF6 (n151.34)
and ZnS (n252.3).
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nounced in Cantor spectra, as is the case with Fibonacci,
the peak locations on the resonance map~see Fig. 8! do not
at all remind of Cantor dust. Evidently, this problem requir
further investigations, and we expect that answers will
found in the forthcoming papers.
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