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1. Introduction 
As regards light propagation in multilayer media in general, it should be noted that the majority of 

results here were obtained in the studies of the two opposite cases. On the one hand, the properties of 
perfectly periodic media (such as photonic crystals) have been generally described and understood, and 
those media are known to exhibit photonic band gaps and omnidirectional reflection, which offers a wide 
variety of applications [1-3]. On the other hand, there are numerous studies devoted to light localization 
and coherent backscattering in absolutely random multilayers (see the review [4] and references therein). 

However, there are structures that behave much like ‘disordered’ but are constructed according to a 
deterministic procedure. They are called non-periodic deterministic (NPD) media, and they constitute a 
separate field of research because they possess the properties of both periodic and random structures and 
also have some distinct features not found in traditional media. Not yet studied to a sufficient extent, NPD 
multilayer stacks lack a neat and generally accepted classification, but one can clearly distinguish several 
large groups in accordance with the algorithm used for the stack construction.  

There are, for instance, substitutional lattices, so called because they are ‘generated’ via a repeated 
substitution rule. These structures were first noticed and thus are best researched among NPD’s. In terms 
of the present paper it is vital that substitutional lattices possessing quasi-periodicity (Fibonacci 
multilayers) have self-similar optical transmission spectra, and the frequencies of resonance peaks form a 
fractal Cantor set [5]. At the same time, there are NPD multilayers that are fractal by themselves. They are 
called multilayer fractal structures because they are constructed in a similar way to well-known fractal 
sets. These structures are much less studied (see for example [6-9]), and are subject to investigation in this 
paper, which is organized as follows. Section 2 deals with the definition of fractal multilayers and certain 
mathematical conventions used later on. Section 3 describes spectral scalability, one of the two effects 
found that indicate a strong connection between geometrical and spectral features of multilayers. 
Discussion and analysis of the other such effect, sequential splitting, is what follows in Section 4. Finally, 
Section 5 summarizes the paper and outlines ways for future investigation. 

2. Multilayer fractal structures 
As was mentioned above, fractal multilayers are those opposed to both periodic and random ones. 

Although it is intuitively understood what to call a fractal multilayer (see Fig. 1 for some examples), the 
strict definition thereof is not so clear. One way is to define multilayer fractal structures as those 
constructed according to a known fractal generation algorithm [9]. However, as will be shown below, this 
algorithm has to be stopped at some point in order to get a finite structure. Therefore, any structure 
obtained in this way is not a genuine fractal, but rather a one-dimensional prefractal, which can be 
regarded as another definition of a multilayer fractal structure. 

In this paper, we are primarily interested in generalized Cantor multilayers constructed as follows. 
The algorithm starts with a seed — a solid bulk of a dielectric material (label it A). The seed is then 
divided into G equal parts numbered in base G (starting with zero), and parts whose number belongs to a 
given subset of digits C are removed from the bulk and replaced with another material (labeled B), 
different from A in its index of refraction n. This division and replacement (DR) procedure is then 
executed multiple times over all the remaining inclusions of A as if they were individual seeds. Here, an 
arbitrary integer G>2 together with the subset C form the generator of the structure, while the number of 
DR procedures N is the number of generations. The whole structure will be referred to as a (G, C, N)-
structure. The total number of layers of such a structure is GN, (G-C)N of which are A-layers, C being the 
number of members in C. For convenience of further considerations, several adjacent layers of the same 
material (A or B) are considered separate layers. 

One can easily see this algorithm can produce (i) ‘usual’ triadic (3, {1}, N), pentadic (5, {1, 3}, N) 
and higher-G Cantor structures (G=2n-1, C={1, 3 … G-1}, N) (see Fig. 1a, b); (ii) non-symmetric 
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structures described in [10], e.g., (5, {1, 2}, N), (6, {1, 3, 4}, N) 
and like that, see Fig. 1c, d; (iii) generalized Cantor bars spoken 
of in [11] of the type (G, {M, M+1,…,G-M-1}, N) (see Fig. 1e). 

It should be noted that the algorithm just described can be 
used in two slightly different versions. In the first one, the 
thickness of the whole structure remains the same for any N and 
equals the thickness of the initial seed, while the structure 
becomes ‘finer’ as N increases. It is this version that is shown in 
Fig. 1. In the other one, instead of the division of the seed into G 
parts, the whole structure is replicated G times, and those 
instances that nave numbers within C are replaced with a layer of 
B whose thickness varies with N according to the power law GN. 
Fig. 1d explains this with more clarity. In this version it is the 
thickness of an individual layer that remains the same for any N, 
while the total thickness d depends on N as 

( ) ( )( )N NN
A Bd G C d G G C d= − + − −  (1) 

where dA and dB are initial thicknesses of individual layers of 
A and B, respectively. (One can easily see (1) reduce to d = GNdA 
when dA= dB). Now it is clear why it is necessary to keep N finite 
in both versions. In the first one, the structure remains finite but 
cannot be treated as a multilayer if the generations approaches 
infinity. In the second one, though the structure remains a 
multilayer, it is rendered infinite non-periodic non-random, and 
the techniques suitable for description of such models escape our 
understanding. 

It is the second version that was used for all calculations, and 
the structures were all quarter-wave stacks, i.e., thickness of 
individual layers satisfies the condition 

04 4A A B Bn d n d λ= =  (2). 
It was so chosen because the ‘size’ of an optical spectrum 

for a multilayer depends on the thickness of an individual layer 
and it is convenient when the spectra for different N are directly 
comparable, especially in the case of quarter-wave stacks when 
all computation can be restricted to one period ω∈[0, 2ω0], 
where ω0=2πc/λ0 However, from the physical point of view it 
makes no difference as all calculations were made in normalized 
frequency defined as η≡ω/ω0. 

Simple scaling relations allow to calculate the fractal 
dimensionality of any (G, C, N)-structure. It contains (G-C) 
previous generation substructures (G, C, N-1), each one taking up 

1/G fraction in thickness. The structure being quarter-wave, the dimensionality equals 
( )ln
ln
G C

D
G
−

=  (3). 

The last thing to note in this section is that such a description of fractal multilayers structures, while 
being very general, is also a little superfluous. For instance, structures (3, {1}, N), (6, {2, 3}, N), 
(9, {3, 4, 5}, N) and so on are obviously identical in terms of normalized frequency. This can be written as 
a general rule that (G, C, N) and (G, C′, N) where C={c1,…,cm} and 

( ){ } ( ){ }{ }1 1 1 1 1 1m mkc k c kc k c′ = + − ∪ ∪ + −C     are identical from the spectral standpoint. Further-

more, structures (G, C, kN) and (Gk, C′, N) where C′ can be derived from (G, C, k) are the same too (for 

 
 (a) (b) 

  
 (c) (d) 

 
 (e) 

FIG. 1. Multilayer frac-
tal structures of various 
types: Cantor 
multilayers (3,{1},N) 
(a) and (5,{1,3},N) (b); 
non-symmetric stacks 
(5,{1,2},N) (c) and 
(6,{1,3,4},N) (d); gene-
ralized Cantor bar 
(5,{1,2,3},N) (e). All 
structures are shown 
for N=1,2,3 (top to 
bottom). 
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instance, (3, {1}, 2) and (9, {1, 3, 4, 5, 7}, 1)), so the latter is also not unique. Additional identities appear 
if the refractive index of the medium surrounding the structure equals that of either material. Basically, C 
can be reduced to a set of numbers that would be more characteristic for fractal multilayers, but the 
technique of this reduction remains unclear. On the other hand, to the best of our knowledge, there are no 
known fractal multilayers that do not fit into the scheme presented. 

3. Spectral scalability 

Prior to discussion of the numerical results obtained, it is worth noting that all calculations were 
made using a method implemented by us [9] that is applicable for arbitrary multilayer stacks made up of 
isotropic, non-magnetic dielectric materials. The computation yields the optical transmission spectra as 
well as the field intensity distribution inside the structure for any given frequency. 

As was already noted in Sec. 2, a (G, C, N)-structure contains several instances of previous 
generation substructures that are 1/G in thickness related to the whole stack. Taking into account self-
similarity of fractal multilayers, this statement remains true for these (G, C, N-1) substructures which in 
turn encompass several  (G, C, N-2)’s, and so on down to N=0. Thus, Gk can be called the scaling factor 
between the structures (G, C, N) and (G, C, N-k), and this property can be called geometrical scalability 
of fractal multilayers. 

We have found this property has a direct reflection in the optical spectra. We have found that if one 
magnifies the central region (i.e., located around the central frequency) of the spectrum of a (G, C, N)-
structure by a factor of G along the frequency axis, this central region will match the spectrum of a 
(G, C, N-1) almost perfectly. This spectral scalability was first noted for Cantor structures [9] (see 
Fig. 2 and 3) , but subsequent research reveals that other fractal multilayers also exhibit spectral 
scalability (see Fig. 4 and 5). What is more, the scaling factor is the same in this case and again equals Gk 
between (G, C, N) and (G, C, N-k). 

The explanation is rather straightforward. Regarding a multilayer as a complex system of bound 
optical resonators (and there are all reasons for doing so, since fragments of fractal structures often have 
limited periodicity in a variety of scales, and periodic multilayers are known to be good mirrors), we can 
state that each resonator (e.g., a particular layer) introduces a mode (i.e., a resonant transmission peak) in 
the spectrum. The thicker such a layer is, the nearer the peak will be to the central frequency. Keeping this 
in mind, it is easy to see that it is self-similarity of fractal multilayers that results in spectral scalability, 
and not the geometrical scalability itself as it might seem at first sight.  
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FIG. 2. Spectral scalability for Cantor (3,{1},N) structures: central part of the spectrum for N=4 scaled by three (a) 
versus full period of the spectrum for N=3 (b); central part of the spectrum for N=4 scaled by 9 (c) and central part of 
the spectrum for N=3 scaled by three (d) versus full period of the spectrum for N=2 (e). Comparing the graphs in the 
rows, one can notice apparent scaling properties. 
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FIG. 3. Spectral scalability for Cantor (5,{1,3},N) structures: central part of the spectrum for N=3 scaled by 5 (a) versus 
full period of the spectrum for N=2 (b). As in Fig. 2, scalability is seen clearly. 

1.8 1.9 2 2.1 2.2
Normalized frequency

0.2

0.4

0.6

0.8

1

noissi
msnarT

1 1.5 2 2.5 3
Normalized frequency

0.2

0.4

0.6

0.8

1

noissi
msnarT

 
FIG. 4. Scaling properties of non-symmetric (4,{1},N) 
structures: the central part of the spectrum for N=4 scaled 
by 4 (b) versus full period of spectrum for (4,{1},3)  (a). 
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FIG. 5. Scaling properties of (7,{1,5},N) structures: the 
central part of the spectrum for N=2 scaled by 7 (b) 
versus full period of spectrum for N=1 (a) 

4. Sequential splitting  

However, geometrical scalability does result in another important property that can be treated as a 
direct correlation between fractal multilayers’ structural and spectral features.  

We have found that when the spectrum of a (G, C, N)-structure exhibits a resonant transmission peak 
on a certain frequency (and those peaks are very likely to be present in the spectra of most multilayers), in 
the next generation, i.e., in the (G, C, N+1)-spectrum, a multiplet replaces the peak, or, in other words, the 
peak splits into a multiplet. This splitting occurs every time N is increased, and we have therefore termed 
this property sequential splitting. Between the multiplets that resulted from splitting new transmission 
peaks appear, also in multiplets in the general case. We have found out that the number of components in 
both kinds of the multiplets (call it split and new multiplets, respectively) is the same throughout the 
structure and solely depends on its generator. 

Again, this property was first observed and is most apparent in Cantor structures (see Fig. 6), but 
other fractal multilayers also exhibit it to some extent (Fig. 7). One can see that the overall width of the 
multiplet remains almost unchanged during splitting, while the ‘outer slopes’ steepen, so the envelope 
becomes close to rectangular as N increases. This fact can have useful applications in optical band-pass 
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and band-reject filters. On the contrary, new multiplets appear separated and do not have a common 
envelope.  

Splitting can be explained using a resonant system approach, too. Previous generation substructures 
found in a (G, C, N) multilayer can be regarded as bound coupled resonators, and resonators are known to 
have their mode structure split when binding occurs. Additionally, according to the stack construction 
procedure, the increase of N introduces layers never found in previous generations, so new modes must 
appear in the spectrum as well, and that is what happens. From this reasoning it follows that the number 
of components in split multiplets msplit equals the number of previous generation substructures, while the 
number of components in new multiplets mnew equals the number of new layers introduced into the 
structure. For example, for Cantor structures (for which G is odd and C={1, 3,… G-1}) 

split
1

2
Gm +

=  (4), 

new
1

2
Gm −

=  (5). 

This can be additionally and directly confirmed by plotting the spatial distribution of the field 
intensity at the frequencies of the multiplet components in different cases. One can see in Fig. 9 that in the 
case of a split multiplet the field is localized in the previous generation substructures, while for new 
multiplets localization inside newly-introduced layers occurs. This shows what layers, or cavities from the 
bound resonators standpoint, are responsible for the peak (single or multiplet) at a given frequency. 
However, the difference between field profiles at the multiplet components is observed in other areas. For 
split multiplets such difference is found in newly-introduced layers, which act as binding areas. If new 
peaks appear in multiplets, too, then the difference between components’ profiles is found between the 
layers where field is localized. This clearly demonstrates what regions of the structure are responsible for 
splitting and thus determine the number of components. 

As regards other fractal multilayers, it can be seen that msplit is always the same for a given structure 
and equals  

splitm G C= −  (4). 
The number of components in a new multiplet, however, may vary across the spectrum for certain 

structures. For instance, in a (5, {1, 2, 3}, N) new peaks appear as doublets as well as singles (see Fig. 7a). 
Additionally, in the spectra of many non-Cantor fractal multilayers new multiplets appear rather close to 
split ones, which makes them difficult to tell from each other, but the field intensity profiles would clear 
this confusion. 
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FIG. 6. Peak splitting in Cantor 
multilayers (a) for G=3 (dashed, N=2; 
solid, N=3; thin solid, N=4); (b) for G=5 
(thick, N=2; thin, N=3). Note the number 
of components for split and new 
multiplets and the unchanged width of the 
multiplet during splitting.  
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FIG. 7. Peak splitting in non-
Cantor fractal multilayers: 
(a) (5,{2},N), N=2 and 3; 
(b) (5,{1,2,3},N), N=2,3,4; 
(c) (4,{1},N), N=2,3,4. The 
line dashing and thickness 
conventions are the same as 
in Fig. 6. Note a very narrow 
(∆η≅1.5⋅10-7) single peak at 
the right edge of (a). 
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FIG. 8. Field intensity profiles at the frequencies of the peaks: (a) (3,{1},3), new single peak; (b) (5,{1},3), new doublet (solid 
and dashed correspond to two components); (c) (3,{1},3), split doublet. Localization regions and areas where the components’ 
profiles differ can be observed. 

 

5. Conclusions  

As a main result of this work, we can state that a direct correlation 
between geometrical and spectral properties of multilayer fractal structures 
exists and manifests itself in at least two distinctive effects, spectral 
scalability and sequential peak splitting. It is then natural to put forward 
another question on whether geometrical fractality of the structures under 
study is present in their optical spectra owing to the correlation found.  

Fractal spectral properties, if any, are most likely to be found in the 
transmission band spectrum (also called resonance map), i.e., the locations 
of resonance peaks (see Fig. 10 for an example with Cantor structures). On 
the one hand, there are known multilayers with fractal transmission band 
spectra [5, see also references therein], and it can be seen from Fig. 9 that as 
N increases, new peaks appear according to a definite pattern, which points 
towards the presence of fractal dimensionality in the spectra. On the other 
hand, one can easily notice that new resonances appear between all the 
existing ones when N increases, the whole period being filled with peaks to a 
greater or a less extent. Therefore it is obvious that the fractal such spectra 
might represent have nothing in common with a Cantor fractal set, which is 
the case with quasi-periodic multilayers and which would be most logical for 
Cantor multilayers from the point of view of the above mentioned 
correlation. Besides, there are indications [12] that the peak locations for 
Cantor structures at least can be determined with a series of periodic 
functions with the minimal period inversely proportional to N, so the peaks 
are expected to fill the frequency scale uniformly when N approaches 
infinity. Nevertheless, in this latter case not only will resonance peaks appear 
everywhere in the spectrum, but also regions of zero transmission be found 
between most of them. So, the question on fractal behavior of the spectra of 
multilayer fractal structures remains a topic for future investigations. 
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