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Abstract

We propose to consider multilayer spatial structures as numbers. An arbitrary finite sequence of layers with N values

of a material parameter which determines the speed of wave propagation is considered as a number written in the

numeration system with base N. Within the framework of this approach propagation of classical waves and quantum

particles can be treated as number recognition. A problem is formulated of identification of a type among spatial

sequences featuring unique spectral portraits versus spatial structure. It is shown possible to perform certain arithmetic

operations by means of sequential propagation of waves through several structures. Using fractal Cantor structures as a

representative example, spectral properties of waves are shown to reproduce certain properties of the corresponding

numbers. A possibility is outlined to use the above approach for data storage. If a set of numbers possessing unique

spectral portraits forms a complete set, then compact coding of arbitrary numbers will become possible. � 2002

Elsevier Science B.V. All rights reserved.

1. Introduction

Propagation of waves in heterogeneous media
which have topological inhomogeneities along
propagation direction with size comparable to
wavelength in vacuum or in a continuousmedium is
characterized by multiple scattering and interfer-

ence. In amediumwith randomly distributed spatial
inhomogeneities, wave propagation is diffusive and
in many cases wave localization occurs. In deter-
ministic non-continuous media, resonance propa-
gation (tunneling) of wave is possible. If inelastic
scattering (dissipation) of waves in a medium is
negligible, propagation features complementary
spectra of resonant transmission and reflection.
These are determined by the spatial distribution of
the material parameter which determines speed of
the wave propagation. These parameters are po-
tential energy for quantum particles, refraction in-
dex for electromagnetic waves, material density for
acoustic waves. Multilayered media with stepwise
variation of the parameter determining wave
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propagation velocity comprise a specific case of
deterministic non-continuous media.
In the present contribution, we propose to

consider multilayered spatial structures as num-
bers. Within the framework of such consideration,
propagation of classical waves and quantum par-
ticles can be treated as number recognition. The
problem is posed of determination of a group of
sequences which possess a single-value relationship
of the spatial structure (i.e., number value) and
resonant frequency (energy) spectrum. The pro-
posed consideration can be used for dense data
storage.
The paper is organized as follows. In Section 2

we introduce a general problem formulation of
considering an arbitrary multilayer structure as a
number with discussion of its application for
quantum and classical waves; in Section 3 we
consider a specific case of structures built of two
different materials which comprise binary num-
bers; in Section 4 we demonstrate a possibility to
perform certain arithmetical operations by means
of sequential propagation of waves through a
couple of structures; in Section 5 a problem is
posed of searching for at least one complete set of
numbers possessing unique spectral portraits; in
Section 6 we demonstrate that classes of numbers
exist for which a definite correlation occurs be-
tween spectral portraits and number of prime
factors. Finally, in Section 7 we summarize the
principal results of the paper.

2. Problem formulation

Multiple scattering and interference of scattered
waves can result in resonant transmission of waves
in an inhomogeneous medium if a physical pa-
rameter which determines wave velocity experi-
ences spatial variation along propagation direction
featuring certain regularities. The representative
examples can be found in quantum as well as in
classical physics. In quantum physics (and in
electronics) these are resonant tunneling of a par-
ticle through a sequence of identical potential
barriers, non-reflecting motion of a particle over a
set of identical wells or barriers, development of
energy bands in periodic potentials (crystals and

quantum-size superlattices), development of a
fractal-like spectrum of a particle in a quasiperi-
odic potential (quasicrystals). In classical physics,
similar phenomena can be recognized as well. In
particular they are clearly identified for electro-
magnetic waves. These are development of reso-
nant transmission bands in a Fabry–Perot
interferometer, formation of stop bands and
transmission bands in multilayered dielectric mir-
rors, fractal transmission spectra known for
quasiperiodic multilayer structures. Mathematical
isomorphism of the single-particle steady-state
Schroedinger equation relevant to a particle in
potential field and Helmholtz equation for waves
in a medium with space-dependent dielectric
function leads to the analogy of classical (e.g.,
electromagnetic) waves and quantum particles
(e.g., electrons) in deterministic media. In quan-
tum physics, many problems related to electron
spectra in various deterministic inhomogeneous
media were investigated earlier than their classical
analogs. This happened because quantum-me-
chanical formulation of these problems arose in
the course of the systematic analysis of electron
properties of solids including crystals, quasicrys-
tals and nanostructures. Later on quantum me-
chanical problems related to electron properties of
heterogeneous media were posed by development
of nanoelectronics which basically uses the ideas of
quantum engineering. In the recent years, a
transfer occurs of ideas, concepts and results from
quantum to classical physics. It is favored by
development of optics of complex media and
nanostructures including photonic crystals, quasi-
crystals and other complex media with determin-
istic dependence of dielectric function versus
coordinates.
A layered structure features a stepwise depen-

dence of dielectric function or potential energy
along the direction normal to the layer plane.
These structures form a specific class of deter-
ministic complex media. We propose to consider a
structure containing N substances with different
material parameters as a number written in base
N. Then propagation of classical waves and
quantum particles through such a structure can be
viewed as number recognition. Layered structures
built of two substances with different values of a
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physical parameter which determines wave prop-
agation velocity will correspond to binary num-
bers. For example, we ascribe for clarity ‘‘1’’ to a
layer with higher value of potential energy U in the
case of quantum particles, refraction index n in the
case of electromagnetic waves, density in the case
of acoustic waves and ‘‘0’’ to a layer with the lower
value of the proper parameter (Fig. 1). Then a fi-
nite sequence of layers can be treated as the rele-
vant number. This case will be considered in what
follows because of its simplicity and importance of
binary numbers in modern informatics. For clar-
ity, we shall consider electromagnetic waves and
use optical terminology in discussions. By solving
Schroedinger and Helmholtz equations with step-
wise potential and relevant boundary conditions
one can get spectrum of resonant transmission and
reflection of quantum particles and electromag-
netic waves for every specific structure. In a sense,
solving of these equations gives a spectral portrait,
which is characteristic for a given structure. All
examples given in the following sections were ob-
tained by means of numerical solutions of Helm-
holtz equation which is isomorphic to the single-
particle steady-state Schroedinger equation.

Therefore, all conclusions are equally valid for
multilayered quantum-size structures with respect
to resonant tunneling and propagation of electrons
over barriers (wells). For the sake of simplicity and
clarity we consider layers with equal optical
thicknesses, i.e., those satisfying a condition
d1n1 ¼ d0n0, where di is the geometrical thickness
and ni is the refraction index of a given layer.

3. Identification of binary numbers

We start consideration with binary numbers
consisting of alternating ‘‘0’’ and ‘‘1’’, i.e., 0, 1, 10,
101, 1010, 10101, 101010, 1010101, 10101010; . . .
These correspond to decimal numbers 0, 1, 2, 5,
10, 21, 42, 85, 170, 341; . . . Every next term in this
raw can be obtained either by multiplication of the
previous one by 2 (if one write ‘‘0’’ in the end) or
by multiplication of the previous one by 2 and
adding 1 (if one writes ‘‘1’’ in the end). This series
of numbers can be expressed by either of the two
recurrent formulas:

I0 ¼ 0; In ¼ 2In�1 þ
0; if n is even;
1; if n is odd;

� �
ð1Þ

Fig. 1. A binary number, its representation in the form of a multilayer structure consisting of two substances, A and B, and the

corresponding profiles of potential energy and refraction index.
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I0 ¼ 0; I1 ¼ 1; In ¼ 2n�1 þ In�2: ð2Þ

In optics, structures of this type are known as
multilayer dielectric mirrors whereas in nanoelec-
tronics they are referred to as quantum well su-
perlattices. Spectral portraits of these structures
are presented in Fig. 2. A systematic sequential

modification of spectra with increasing number
‘‘length’’ is clearly seen.
Numbers which have several ‘‘0’’ and ‘‘1’’ in the

middle and alternating ‘‘0’’ and ‘‘1’’ in the edges
can be very well identified as well. These, e.g., are
101010000010101 or 101011110101. With respect
to electromagnetic waves these structures form
interferometers whose intermediate layer thickness
corresponds to a set of similar digits (layers) in the
center whereas alternating digits in the edges form
mirrors. In this case, one or more sharp lines ap-
pear in transmission spectrum,the number and
position of lines being determined by the number
of digits in the central part of a binary number
(Fig. 3). As we have mentioned above, develop-
ment of resonant transmission bands in an optical
interferometer is an analog of resonant tunneling
in quantum structures. Note that the sides of the
spectral portraits of a composite number show
residual similarity to the proper original number
(10101 in the case given in Fig. 3) but every
transmission peak splits into two subbands. The
splitting results from the symmetry of the struc-
ture. It occurs not only in optical structures but in
symmetric quantum wells, in coupled identical
pendulums, and in coupled LC-circuits.
Numbers with frequently alternating ‘‘0’’ and

‘‘1’’ are well recognized as well, e.g., 10010101 or
101101010 (Fig. 4). Replacing of one digit in a
sequence of alternating ‘‘0’’ and ‘‘1’’ results in
disappearance of one peak in the periodic spec-
trum and appearance of the new transmission
band in the other part of the spectrum. Note, this
modification corresponds to the appearance of a
defect mode in a photonic crystal or an impurity
state in energy spectrum of an electron in a crystal
or superlattice. One can speak about donor or
acceptor modes (states) depending on which digit,
‘‘0’’ or ‘‘1’’, is replaced by the complementary one.
Symmetry of transmission spectra with respect

to wave propagation direction makes numbers
non-distinguishable in a number of cases. This is
valid for numbers differing in the order of digit
positions, e.g., 110101 versus 101011, or 11110101
versus 10101111. Furthermore, zeros at the right
hand cannot be recognized because zeros at the left
hand are not meaningful. This means numbers
expressed as M � 2N can be identified only with

Fig. 2. Spectral portraits of binary numbers consisting of

alternating unities and zeros. Values of such numbers are

expressed by Eqs. (1) and (2).
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respect to mantissa M whereas the binary expo-
nent N of the number remains unknown. In other
words, for numbers like M � 2N measurement of
transmission spectrum provide reconstruction of
the fractional part of the number logarithm but

not the number value. However, recognition of
two numbers differing in order of digit displace-
ment as well as identification of numbers with
several zeros at the end can be performed if a kind
of asymmetry is introduced in the structure. This
can be made, e.g., by varying layer parameters
along wave propagation direction. Alternatively,
at different edges of the structure different (with
respect to refraction index) ambient environments
can be created. For example, if a structure from
one side is in contact with air (n� ¼ 1), a substrate
can be placed from the other side with refraction
index n 6¼ n0 6¼ n1 6¼ n�. As a result, the ‘‘begin-
ning’’ and the ‘‘end’’ of a multilayer number will
become distinguishable.

Fig. 4. Spectral portraits of two binary numbers differing in

position of a single digit.

Fig. 3. The spectral portraits of numbers generated from two

sequentially written N ¼ 101012 ¼ 21 numbers with 2, 3, and 4

zeros in the middle. A transition from one number to another

one corresponds to operations described by Eq. (3).
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4. Operations with numbers

Is it possible to perform operations with num-
bers using wave propagation through a sequence
of multilayer numbers? Using structures of Fabry–
Perot interferometer type we show that such a
possibility does exist. An interferometer is a se-
quence of alternating layers broken in the middle.
For example, if mirrors have the structure
1012 ¼ 5 in the absence of an intermediate layers
one has 1011012 ¼ 45. In the general case, if the
original mirror is identified as number N, two se-
quential mirrors can be expressed as number
M ¼ N � ð2k þ 1Þ, where k is the ceiling integer
part of N on base 2, i.e., k is the number of digits
in N written in base 2. Adding zeros in the middle
of this structure gives a series of numbers

1011012 ¼ 45 ¼ 5� 23 þ 5;

10101012 ¼ 85 ¼ 5� 24 þ 5;

101001012 ¼ 165 ¼ 5� 25 þ 5

and so on. A systematic change in transmission
spectrum of such a layer set upon expanding of an
intermediate part is evident from Fig. 3. Here
spectral portraits are given of three numbers re-
sulting from two sequentially written numbers
N ¼ 101012 ¼ 21 with two, three and four zeros in
the middle. To summarize, a statement can be
formulated: Sequential transmission of waves
through a couple of numbers N spaced by the
length L ¼ 0; 1; 2; . . . corresponds to application of
an operator to N

L̂LðNÞ ¼ N � ð2kþL þ 1Þ; ð3Þ
where k is the number of digits in N written in
base 2.

5. Information coding using full sets of numbers

In the previous sections it was shown that
principally a spectral portrait can be assigned to
every number. Is this assignment unique? In other
words, is it always possible to reconstruct the
original spatial distribution of a potential or a
dielectric function using a given spectral portrait?
Most probably, in general formulation the prob-

lem is not solvable. For quantum particles the
analysis of inverse problems of the Schroedinger
equation seems to be better examined [1] then
analysis of inverse problems in the case of the
Helmholtz equation. However even with respect to
the Schroedinger equation the analysis is rather far
from being complete. A problem can be formu-
lated of identifying classes of sequences possessing
a unique relationship between a spatial structure
(i.e., a number value) and a resonant frequency
(energy) spectrum relevant to non-reflective prop-
agation of waves through such a structure. Num-
bers belonging to these classes feature unique
spectral portraits and can be unambiguously rec-
ognized by means of wave propagation. In optics
this property can be used in optical data recording
and read-out, in nano- and opto-electronics it can
be used in engineering nanostructures with prede-
fined energy spectrum of electrons. It is clear that
not only identification of a specific number but
also the possibility to code and identify any given
number is necessary for information coding. Most
probably, an optimal solution of this problem can
be gained by searching among all the sets allowing
strict identification by spectral portraits for at least
one complete set of numbers [2], i.e., a set pro-
viding representation of any given number as a
sum of a few different numbers belonging to the
set. In case such a set cannot be found, coding of
numbers can be performed using representation of
a given number as a sum or a product of numbers
with unique portraits. However in this case the
gain in information density will not be so signifi-
cant as it might be in the case of a full set.

6. Spectral portraits versus factorization problem

In this section, we show that at least in certain
cases analysis of spectral portraits provides hints
to prime factors of numbers. Cantor numbers will
be used as representative example. We consider, a
binary number belongs to the class of Cantor
numbers if position of unities and zeros in the
number obey the law of Cantor sets. A triadic
Cantor multilayer structure is generated by means
of iterative substitution of a middle 1/3 part of a
dielectric layer by a layer with different refraction
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index [3]. In Fig. 5 several junior generations of
triadic Cantor structures are presented. In Table 1
a few junior generations of triadic Cantor numbers
are written.
Generally, to build a Cantor lattice a linear

segment is to be divided into odd number of equal
parts, the even parts is then iteratively removed.
These structures contain GN layers, where G is
generator equal to 3, 5, 7; . . ., and N ¼ 1; 2; 3; . . . is
a generation number. Cantor structure comprises
a fractal set with dimensionality

DðGÞ ¼ ln½ðGþ 1Þ=2

lnG

; ð4Þ

i.e., Dð3Þ ¼ ln 2= ln 3 for triadic (i.e., for G ¼ 3)
and Dð5Þ ¼ ln 3= ln 5 for pentadic (i.e., for G ¼ 5)
structures.
It is possible to build optical multilayer filters

based on Cantor sets [4]. We performed a sys-
tematic analysis of spectral characteristics of op-
tical Cantor filters [5] and revealed a pronounced
correlation between spectral portraits of Cantor
numbers and their prime factors.
A binary Cantor number value C2ðG;NÞ of Nth

generation with G-generator can be expressed by a
general formula

C2ðG;NÞ ¼ C2ðG; 1Þ þ
1

2
C2ðG; 1Þ

X
i6¼j

2jG
i�Gjj;

with i; j ¼ 1; 2; . . . ;G: ð5Þ

By means of systematic analysis of large number of
Cantor structures with different generators, a se-
quential splitting of characteristic spectral lines
was found to occur for successive generation
number. The splitting is two-fold for triadic

Fig. 5. Triadic Cantor structures. N is generation number.

Table 1

Triadic Cantor numbers

Generation Binary code Decimal value

N ¼ 1 101 5

N ¼ 2 101000101 325 ¼ 5� ð20 þ 26Þ
N ¼ 3 101000101000000000101000101 85197125 ¼ 5� ð20 þ 26 þ 218 þ 224Þ

Fig. 6. (a) Spectral portrait of a triadic Cantor number of the

second generation (N ¼ 2) and (b) spectrum modification in the

vicinity of a characteristic transmission peak for generations

with N ¼ 2 (short dash), 3 (long dash), and 4 (solid line).
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structures, three-fold for pentadic ones and
½ðGþ 1Þ=2
-fold for an arbitrary G value. The
splitting gains a reasonable explanation in terms of
coupled cavities by analogy with the above men-
tioned cases in classical and quantum mechanics
and in electricity, i.e., coupled pendulums, quan-
tum wells and LC-circuits [5]. In Fig. 6 a trans-
mission spectrum of a triadic Cantor structure
with N ¼ 2 in the vicinity of a characteristic
transmission peak for and its successive evolution
N ¼ 2; 3; 4 are shown. With increasing of genera-
tion number new peaks appear whereas the pre-
viously existing ones undergo double-splitting. The
characteristic single peak for N ¼ 2 at dimension-
less frequency 0.795 splits into two peaks for
N ¼ 3 and into 4 peaks for N ¼ 4. In its turn, the
peak which is characteristic for N ¼ 3 at frequency
0.710 splits into two peaks for N ¼ 4.
Surprisingly, we found the multiplets of char-

acteristic transmission peaks in spectral portraits
of Cantor numbers does correlate with existence of
multiple prime factors of the same numbers. In
Table 2 decimal representations of triadic Cantor
numbers with N ¼ 1, 2, 3, 4, 5 and their prime
factors are shown. The first number in square
brackets is prime factor, whereas the second
number in the brackets is its multiplicity. With
increasing N, multiplicity of prime factors inherent
in the previous generation increases by 1. Cantor
numbers were found to possess definite sets of
prime factors, every generator having its own un-
ique set. For triadic numbers this is 5, 13, 37,
109; . . . For pentadic numbers this is 3, 7, 151,
331; . . .
The revealed correlation means spectral por-

traits not only provide a possibility to recognize
numbers but also in certain cases contain instruc-

tive hints of number properties. In case of Cantor
numbers, cor-relation of spectral multiplets with
multiple prime factors makes a link between light
propagation, number recognition, and number
factorization.

7. Conclusions

The revealed correlations of geometrical struc-
ture and spectral portraits (transmission spectrum
of electromagnetic waves, resonance tunneling
spectrum of quantum particles) inherent in multi-
layer sets of different materials give a possibility to
consider propagation of waves as number recog-
nition. The approach can be utilized for number
coding and data storage. It can be used in existing
as well as new devices for data recording, storage
and readout. These can be e.g., optical discs with
multilayer coatings and optical readout, and
multilayer nanostructures with tunnel microscope
readout as well as other structures.
Note that energy dissipation is absent in the

structures considered. In real structures dissipation
can be minimized to make negligible effect on
optical spectrum. Propagation of waves without
energy dissipation results in complementary
transmission and reflection spectra. Therefore,
number recognition using multilayer structures
can be performed not only in transmission mode
but in reflection mode as well which might be
beneficial in certain applications.
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